会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • GRAIN POSITION PLATFORM MANAGER APPARATUSES, METHODS AND SYSTEMS
    • 颗粒位置平台管理器设备,方法和系统
    • WO2013148290A1
    • 2013-10-03
    • PCT/US2013/031784
    • 2013-03-14
    • TELVENT DTN LLC
    • TRAUGER, Charles E.AUBITZ, ScottDWYER, Mary RoseRYDBERG, KrisKARL, AndyFRIEDRICHSEN TANGEN, Mary S.
    • G06Q50/02
    • G06Q10/06
    • The GPPM transforms producer crop asset information via GPPM components into dynamic, automated, real-time, and/or near real-time inventory updates, comprehensive agricultural portfolio information, offers, sales and/or purchase agreements, and/or dynamic, automated, real-time and/or near real-time market updates and feeds. The GPPM also provides online producer inventory integration with internal and external sources, geo-spatial commodity sensory location and updates, and dynamic, automated, real-time, and/or near real-time market and benchmark analyses. The GPPM receives crop asset storage resource information, such as location data for crop storage resource(s). The received information is associated with a producer crop asset management account. Mobile devices may be associated with the account. The GPPM determines when an associated mobile device is within a specified distance of a storage resource location and notifies the mobile device. The GPPM receives dynamic crop volume data for the crop storage resource and associates it with the producer crop asset management account.
    • GPPM通过GPPM组件将生产者作物资产信息转化为动态,自动化,实时和/或近实时库存更新,综合农业投资组合信息,报价,销售和/或采购协议,和/或动态,自动化, 实时和/或近实时市场更新和Feed。 GPPM还提供在线生产者库存与内部和外部来源的集成,地理空间商品感觉位置和更新,以及动态,自动化,实时和/或近实时的市场和基准分析。 GPPM接收作物资源存储资源信息,例如作物存储资源的位置数据。 收到的信息与生产者作物资产管理帐户相关联。 移动设备可能与帐户相关联。 GPPM确定何时关联的移动设备在存储资源位置的指定距离内,并通知移动设备。 GPPM接收作物存储资源的动态作物体积数据,并将其与生产者作物资产管理帐户相关联。
    • 2. 发明申请
    • AIRFOIL ICING CONTROLLER APPARATUSES, METHODS AND SYSTEMS
    • 飞行器控制器设备,方法和系统
    • WO2014106269A1
    • 2014-07-03
    • PCT/US2013/078541
    • 2013-12-31
    • TELVENT DTN LLC
    • MCCANN, DonaldBLOCK, James H.LENNARTSON, Daniel W.
    • B64D15/00
    • B64D15/20B64D15/00B64D31/06G01C21/20G08G5/0013G08G5/0021G08G5/0034G08G5/0039G08G5/0091
    • The airfoil icing controller apparatuses, methods and systems ("AIC") transforms weather and flight parameter data via AIC components into icing determinations and icing avoidance optimized flight plans based on airfoil type. In one implementation, the AIC comprises a processor and a memory disposed in communication with the processor and storing processor-issuable instructions to receive anticipated flight plan parameter data, obtain weather data based on the flight plan parameter data, obtain atmospheric data based on the flight plan parameter data, and determine a plurality of four-dimensional grid points based on the flight plan parameter data. The AIC may then determine a percent power increase (PPI) required by the aircraft to overcome power loss due to icing conditions. With dynamic, (near) real-time icing information and/or predictive icing forecast specific to airfoil type, the AIC may allow aircraft to effeciently avoid areas where PPI is greater than a predetermined percentage and/or avoid areas where dangerous icing may occur.
    • 机翼结冰控制装置,方法和系统(“AIC”)通过AIC组件将天气和飞行参数数据转换为基于翼型的结冰确定和结冰避免优化飞行计划。 在一个实现中,AIC包括处理器和与处理器通信的存储器,并且存储处理器可发出的指令以接收预期的飞行计划参数数据,基于飞行计划参数数据获得天气数据,基于飞行获得大气数据 计划参数数据,并且基于飞行计划参数数据确定多个四维网格点。 然后,AIC可以确定飞机需要的百分比功率增加(PPI)来克服由于结冰条件引起的功率损耗。 通过动态(近)实时结冰信息和/或特定于翼型的预测结冰预测,AIC可以允许飞机有效地避免PPI大于预定百分比的区域和/或避免可能发生危险结冰的区域。
    • 3. 发明申请
    • DYNAMIC STORM ENVIRONMENT ENGINE APPARATUSES, METHODS AND SYSTEMS
    • 动态环境发动机装置,方法和系统
    • WO2015095890A1
    • 2015-06-25
    • PCT/US2014/071987
    • 2014-12-22
    • TELVENT DTN LLC
    • MCCANN, DonaldLENNARTSON, Daniel W.BLOCK, James H.
    • G01W1/00
    • G01W1/10G01W1/00G01W2001/003G01W2203/00Y02A90/14
    • The DYNAMIC STORM ENVIRONMENT ENGINE (DSEE) transforms flight profiles, atmospheric data, and convective and non-convective turbulence predictions and observations into dynamic turbulence alerts, nowcasts, and optimized flight paths. The DSEE determines four-dimensional grid points for a temporal geographic area and determines atmospheric potential instability and potential turbulence intensity at each grid point. The DSEE masks potential turbulence intensity at least one grid point and determines and outputs at least one of the TKE and the total EDR for each grid point. In some implementations, the DSEE receives a flight profile for an aircraft, including an initial route. The DSEE can identify an initial predicted comprehensive turbulence for the at least one initial route and/or turbulence nowcast, and the predicted comprehensive turbulence and/or turbulence nowcast utilized generate a notification or exception, and/or are used to reroute the aircraft to avoid or minimize the effects of turbulence on the flight.
    • 动态风暴环境发动机(DSEE)将飞行剖面,大气数据以及对流和非对流湍流预测和观测转换为动态湍流警报,预报和优化飞行路径。 DSEE确定时间地理区域的四维网格点,并确定每个网格点处的大气势不稳定性和潜在的湍流强度。 DSEE屏蔽潜在的湍流强度至少一个网格点,并确定并输出每个网格点的TKE和总EDR中的至少一个。 在一些实施方式中,DSEE接收飞行器的飞行配置文件,包括初始路线。 DSEE可以识别现有的至少一个初始路线和/或湍流的初步预测的综合紊流,并且使用的预测的综合湍流和/或湍流产生通知或异常,和/或用于重新路由飞机以避免 或最小化湍流对飞行的影响。
    • 4. 发明申请
    • DYNAMIC AIRCRAFT THREAT CONTROLLER MANAGER APPARATUSES, METHODS AND SYSTEMS
    • 动态航空器威胁控制器管理器装置,方法和系统
    • WO2014106268A1
    • 2014-07-03
    • PCT/US2013/078540
    • 2013-12-31
    • TELVENT DTN LLC
    • MCCANN, DonaldBLOCK, James H.LENNARTSON, Daniel W.
    • G06F19/00
    • G08G5/006G01W1/00G08G5/0013G08G5/0034G08G5/0039G08G5/0091
    • The dynamic aircraft threat controller manager apparatuses, methods and systems ("DATCM") transforms flight profile information, terrain, weather/atmospheric data and flight parameter data via DATCM components into comprehensive hazard avoidance optimized flight plans. Comprehensive hazard avoidance includes synergistic comprehensive turbulence and airfoil-specific icing data. In one implementation, the DATCM comprises a processor and a memory disposed in communication with the processor and storing processor-issuable instructions to receive anticipated flight plan parameter data, obtain weather data based on the flight plan parameter data, obtain atmospheric data based on the flight plan parameter data, and determine a plurality of four-dimensional grid points based on the flight plan parameter data. The DATCM may then determine comprehensive hazards mappings. With (near) real-time comprehensive hazard information and/or predictive turbulence/icing forecast specific to airfoil type and/or profile parameters, the DATCM may allow aircraft to avoid areas where comprehensive hazard is greater than a predetermined threshold and/or avoid areas where turbulence/icing may occur.
    • 动态飞行器威胁控制器管理器的设备,方法和系统(“DATCM”)通过DATCM组件将飞行情况信息,地形,天气/大气数据和飞行参数数据转换为综合的避险优化飞行计划。 综合危害避免包括协同综合紊流和翼型特定结冰数据。 在一个实现中,DATCM包括处理器和与处理器通信的存储器,并且存储可处理器发出的指令以接收预期的飞行计划参数数据,基于飞行计划参数数据获得天气数据,基于飞行获得大气数据 计划参数数据,并且基于飞行计划参数数据确定多个四维网格点。 然后,DATCM可以确定综合危害映射。 具有特定于机翼类型和/或轮廓参数的(近)实时综合危害信息和/或预测性湍流/结冰预报,DATCM可允许飞机避开综合危害大于预定阈值的区域和/或避免区域 可能发生湍流/结冰。
    • 5. 发明申请
    • DYNAMIC TURBULENCE ENGINE CONTROLLER APPARATUSES, METHODS AND SYSTEMS
    • 动力学发动机控制器装置,方法和系统
    • WO2014106273A1
    • 2014-07-03
    • PCT/US2013/078546
    • 2013-12-31
    • TELVENT DTN LLC
    • MCCANN, DonaldBLOCK, James, H.LENNARTSON, Daniel, W.
    • B64C13/16
    • G08G5/0091G08G5/0013G08G5/0021G08G5/0034G08G5/0039
    • The Dynamic Turbulence Engine Controller Apparatuses, Methods And Systems ("DTEC") transform weather, terrain, and flight parameter data via DTEC components into turbulence avoidance optimized flight plans. In one implementation, the DTEC comprises a processor and a memory disposed in communication with the processor and storing processor-issuable instructions to receive anticipated flight plan parameter data, obtain terrain data based on the flight plan parameter data, obtain atmospheric data based on the flight plan parameter data, and determine a plurality of four-dimensional grid points based on the flight plan parameter data. The DTEC may then determine a non-dimensional mountain wave amplitude and mountain top wave drag, an upper level non-dimensional gravity wave amplitude, and a buoyant turbulent kinetic energy. The DTEC determines a boundary layer eddy dissipation rate, storm velocity, and eddy dissipation rate from updrafts, maximum updraft speed at grid point equilibrium level and storm divergence while the updraft speed is above the equilibrium level and identify storm top. The DTEC determines storm overshoot and storm drag, Doppler speed, eddy dissipation rate above the storm top, and determine eddy dissipation rate from downdrafts. The DTEC then determines the turbulent kinetic energy for each grid point and identifies an at least one flight plan based on the flight plan parameter data and the determined turbulent kinetic energy.
    • 动态湍流发动机控制器设备,方法和系统(“DTEC”)通过DTEC组件将天气,地形和飞行参数数据转换成湍流避免优化的飞行计划。 在一个实施方案中,DTEC包括处理器和与处理器通信的存储器,并且存储可处理器发出的指令以接收预期的飞行计划参数数据,基于飞行计划参数数据获得地形数据,基于飞行获得大气数据 计划参数数据,并且基于飞行计划参数数据确定多个四维网格点。 然后,DTEC可以确定无量纲山波振幅和山顶波阻力,上层无量纲重力波振幅和浮力湍动动能。 DTEC确定上升气流的边界层涡流耗散率,风速和涡流耗散率,网格点平衡水平下的最大上升气流速度和风向分歧,同时上升气流速度高于平衡水平,识别风暴顶部。 DTEC确定风暴过冲和风暴阻力,多普勒速度,风暴顶部以上的涡流耗散率,并确定来自下降的涡流耗散率。 DTEC然后确定每个网格点的湍流动能,并根据飞行计划参数数据和确定的湍流动能识别至少一个飞行计划。