会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • VARIED FUEL CELL OXIDANT FLOW CHANNEL DEPTH RESULTING IN FEWER COOLER PLATES
    • 各种燃油电池氧化剂流量深度在较冷的冷却板
    • WO2006071592A1
    • 2006-07-06
    • PCT/US2005/045792
    • 2005-12-15
    • UTC FUEL CELLS, LLC
    • MEYERS, Jeremy, P.
    • H01M8/04H01M8/12H01M8/24
    • H01M8/0265H01M8/023H01M8/0258H01M8/0267H01M8/04014H01M8/04029H01M8/04089H01M8/24H01M8/241H01M8/2457H01M2008/1095H01M2250/20Y02T90/32
    • In a fuel cell stack (l la), a larger number of fuel cells (18-21, 33-36) are interposed between successive cooler plates (13-15) without creating excessively high temperatures in those fuel cells (33-36) which. are remote from the cooler plates, by virtue of increased air flow in air flow field channels (30a) which are deeper in fuel cells (30-36) remote from the cooler plates, compared with the flow field channels (30, 30b) which are in fuel cells (18-21) adjacent to the cooler plates. The thickness of air flow field plates (29b) may be increased to accommodate the increased depth of the air flow channels (30a). Fuel cells (18a) adjacent the cooler plate may have air flow field channels (30b) which are more shallow than normal whereby increased air utilization therein will be balanced by decreased air utilization in the cells (33-36, 33a) having deeper air flow channels (30a); in this case, the channels (30a) may be normal or deeper than normal.
    • 在燃料电池堆(11a)中,较大数量的燃料电池(18-21,33-36)插入连续的冷却板(13-15)之间,而不会在那些燃料电池(33-36)中产生过高的温度, 哪一个。 与流场通道(30,30b)相比,由于在远离冷却器板的燃料电池(30-36)中更深的空气流场通道(30a)中的空气流量增加,远离冷却器板。 在与冷却器板相邻的燃料电池(18-21)中。 可以增加空气流场板(29b)的厚度以适应气流通道(30a)的增加的深度。 靠近冷却器板的燃料电池(18a)可以具有比正常更浅的空气流场通道(30b),由此在其中增加的空气利用将通过具有较深气流的电池(33-36,33a)中的空气利用减少来平衡 通道(30a); 在这种情况下,通道(30a)可以是正常的或比正常的更深。
    • 7. 发明申请
    • EVAPORATIVE COOLING OF FUEL CELLS EMPLOYING ANTIFREEZE SOLUTION
    • 燃料电池的蒸发冷却采用抗冻解决方案
    • WO2007064338A1
    • 2007-06-07
    • PCT/US2005/043942
    • 2005-12-01
    • UTC FUEL CELLS, LLCMEYERS, Jeremy, P.BALLIET, Ryan, J.
    • MEYERS, Jeremy, P.BALLIET, Ryan, J.
    • H01M8/04
    • H01M8/04029H01M8/04059H01M8/04164H01M8/04253H01M2008/1095
    • A fuel cell power plant (19) has a stack of fuel cells (20) cooled by a mixture of water with a non-volatile, miscible fluid that sufficiently depresses the freezing point, such as polyethylene glycol (PEG). The water and fluid are mixed in a reservoir (21), a small pump (22, 60) flows the mixture through coolant channels (28) in or adjacent water transport plates (29); heat of the catalytic reaction warms the water transport plates causing water to evaporate therefrom thereby cooling the stack. The PEG is non-volatile at stack operating temperature and does not evaporate; concentrated PEG is returned (33) to the reservoir (21). Water in the process air flow channels (41), including evaporated process water, is recovered in a condensation-rate-controlled (53, 54)) condenser (46) in communication (48) with the reservoir (21) for remixture with the concentrated PEG solution. Hydrophobic gas diffusion layers (72) shield the proton exchange membrane (70) from the PEG.
    • 燃料电池发电厂(19)具有由水与具有充分压低凝固点的不挥发性,可混溶的流体(例如聚乙二醇(PEG))的混合物冷却的一堆燃料电池(20)。 水和流体在储存器(21)中混合,小的泵(22,60)将混合物流过水输送板(29)中或其附近的冷却剂通道(28); 催化反应的热量加热水输送板,导致水从其中蒸发,从而冷却堆。 PEG在堆叠工作温度下不挥发,不蒸发; 浓缩的PEG被返回(33)到储存器(21)。 处理过程中的空气流通道(41),包括蒸发的工艺水,在与储存器(21)连通的冷凝速率控制(53,54)冷凝器(46)中回收,用于与 浓缩PEG溶液。 疏水性气体扩散层(72)屏蔽质子交换膜(70)与PEG。
    • 8. 发明申请
    • FUEL CELLS EVAPORATIVELY REACTANT GAS COOLING AND OPERATIONAL FREEZE PREVENTION
    • 燃料电池蒸气反应器气体冷却和运行冷冻预防
    • WO2006071580A2
    • 2006-07-06
    • PCT/US2005/045697
    • 2005-12-15
    • UTC FUEL CELLS, LLC
    • REISER, Carl, A.MEYERS, Jeremy, P.JOHNSON, David, D.EVANS, Craig, E.DARLING, Robert, M.SKIBA, Tommy
    • H01M8/02H01M8/04
    • H01M8/0267H01M8/04029H01M8/04044H01M8/04141H01M8/04253H01M8/04291H01M8/241H01M8/2483H01M2008/1095
    • Fuel cells (38) have water passageways (67; 78, 85 ; 78a, 85a) that provide water through reactant gas flow field plates (74, 81) to cool the fuel cell. The water passageways may be vented to atmosphere (99), by a porous plug (69), or pumped (89, 146) with or without removing any water from the passageways. A condenser (59, 124) receives reactant air exhaust, may have a contiguous reservoir (64, 128), may be vertical, (a vehicle radiator, Fig. 2), may be horizontal, contiguous with the top of the fuel cell stack (37, Fig. 5), or below (124) the fuel cell stack (120). The passageways may be grooves (76, 77; 83, 84) or may comprise a plane of porous hydrophilic material (78a, 85a) contiguous with substantially the entire surface of one or both of the reactant gas flow field plates. Air flow in the condenser may be controlled by shutters (155). The condenser maybe a heat exchanger (59a) having freeze-proof liquid flowing through a coil (161) thereof, the amount being controlled by a valve (166). A deionizer (175) may be used.
    • 燃料电池(38)具有通过反应气体流场板(74,81)提供水以冷却燃料电池的水通道(67; 78,85; 78a,85a)。 水通道可以通过多孔塞(69)排放到大气(99),或者通过或不从通道中去除任何水而被泵送(89,146)。 冷凝器(59,124)接收反应物排气,可以具有连续的储存器(64,128),其可以是垂直的,(车辆散热器,图2)可以是水平的,与燃料电池堆的顶部邻接 (37,图5)或下方(124)燃料电池堆(120)。 通道可以是凹槽(76,77; 83,84),或者可以包括与反应物气体流场板中的一个或两个的基本上整个表面相邻的多孔亲水材料(78a,85a)的平面。 冷凝器中的气流可由百叶窗(155)控制。 冷凝器可以是具有流过其线圈(161)的防冻液体的热交换器(59a),该量由阀(166)控制。 可以使用去离子器(175)。