会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • RECURSIVE HIERARCHICAL PROCESS FOR COMBINATORIAL OPTIMIZATION AND STATISTICAL SAMPLING
    • 用于组合优化和统计抽样的综合分层过程
    • WO2016022507A1
    • 2016-02-11
    • PCT/US2015/043515
    • 2015-08-04
    • MICROSOFT TECHNOLOGY LICENSING, LLC
    • HASTINGS, Matthew B.TROYER, MatthiasZINTCHENKO, Ilia
    • G06F17/11G06N3/12
    • G06F17/18G06F17/11G06F17/5009G06N99/002
    • In some examples, techniques and architectures for solving combinatorial optimization or statistical sampling problems use a hierarchical approach. Such a hierarchical approach may be applied to a system or process in a patch-like fashion. A set of elements of the system correspond to a first tier. An objective function associates the set of elements with one another. The set of elements are partitioned into patches corresponding to a second tier. The patches individually include second tier elements that are subsets of the set of elements, and the individual patches have an energy configuration. The second tier elements of the patches are randomly initialized. Based, at least in part, on the objective function, a combinatorial optimization operation is performed on the second tier elements of the individual patches to modify the second tier elements of the individual patches.
    • 在一些示例中,用于解决组合优化或统计抽样问题的技术和架构使用分层方法。 这种分层方法可以以贴片状的方式应用于系统或过程。 系统的一组元素对应于第一层。 一个目标函数将这组元素相互关联起来。 该组元素被分割成与第二层相对应的补丁。 补丁单独地包括作为该组元素的子集的第二层元素,并且各个补丁具有能量配置。 补丁的第二层元素随机初始化。 至少部分地基于目标函数,对各个补丁的第二层元素执行组合优化操作,以修改各个补丁的第二层元素。
    • 7. 发明申请
    • SYSTEM, METHOD AND COMPUTER-READABLE MEDIUM FOR THE PARTIAL REINITIALIZATION OF OPTIMIZERS
    • 用于优化器的部分优化的系统,方法和计算机可读介质
    • WO2017100016A1
    • 2017-06-15
    • PCT/US2016/063744
    • 2016-11-25
    • MICROSOFT TECHNOLOGY LICENSING, LLC
    • HASTINGS, Matthew B.WIEBE, NathanZINTCHENKO, IliaTROYER, Matthias
    • G06F17/50G06F17/11
    • G06N5/022G06F17/11G06F17/50G06F2217/08G06N99/005
    • In some examples, techniques and architectures for solving combinatorial optimization or statistical sampling problems use a recursive hierarchical approach that involves reinitializing various subsets of a set of variables. The entire set of variables may correspond to a first level of a hierarchy. In individual steps of the recursive process of solving an optimization problem, the set of variables may be partitioned into subsets corresponding to higher-order levels of the hierarchy, such as a second level, a third level, and so on. Variables of individual subsets may be randomly initialized. Based on the objective function, a combinatorial optimization operation may be performed on the individual subsets to modify variables of the individual subsets. Reinitializing subsets of variables instead of reinitializing the entire set of variables may allow for preservation of information gained in previous combinatorial optimization operations.
    • 在一些示例中,用于求解组合优化或统计抽样问题的技术和体系结构使用递归分层方法,其涉及重新初始化一组变量的各种子集。 整个变量集合可以对应于层级的第一级别。 在解决优化问题的递归过程的各个步骤中,该组变量可以被划分成对应于层级的更高级别级别的子集,诸如第二级别,第三级别等等。 个别子集的变量可以随机初始化。 基于目标函数,可以对各个子集执行组合优化操作以修改各个子集的变量。 重新初始化变量的子集而不是重新初始化整个变量集可能允许保留在先前的组合优化操作中获得的信息。