会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SYSTEMS AND METHODS FOR BUILDING STATE SPECIFIC MULTI-TURN CONTEXTUAL LANGUAGE UNDERSTANDING SYSTEMS
    • 用于构建状态特定的多转向语境语义理解系统的系统和方法
    • WO2017218370A1
    • 2017-12-21
    • PCT/US2017/036926
    • 2017-06-12
    • MICROSOFT TECHNOLOGY LICENSING, LLC
    • SARIKAYA, RuhiKIM, Young-BumROCHETTE, Alexandre
    • G06F17/27
    • G06F17/279G06F17/2775G06F17/28G06F17/2881G10L15/063G10L15/1815G10L15/1822G10L15/22
    • Systems and methods for building a dialog-state specific multi-turn contextual language understanding system are provided. More specifically, the systems and methods infer or are configured to infer a state-specific schema and/or state-specific rules from a formed single-shot language understanding model and/or a single-shot rule set. As such, the systems and methods only require the information necessary to form a single-shot language understanding model and/or a single-shot rule set from a builder to form or build the dialog-state specific multi-turn contextual language understanding system. Accordingly, the systems and methods for building a dialog-state specific multi-turn contextual language understanding system reduce the expertise, time, and resources necessary to build a dialog-state specific multi-turn contextual language understanding system for an application when compared to systems and methods that require further input from the builder than necessary to build a single-shot language understanding system.
    • 提供了用于构建对话状态特定的多回转语境语言理解系统的系统和方法。 更具体地说,所述系统和方法推断或被配置为从形成的单发语言理解模型和/或单发规则集推断出状态特定模式和/或状态特定规则。 因此,系统和方法仅需要形成构建器的单镜头语言理解模型和/或单镜头规则集所需的信息,以形成或构建对话状态特定的多轮上下文语言理解系统。 因此,与系统相比,用于构建对话状态特定多回转语境语言理解系统的系统和方法减少了为应用程序构建对话状态特定多回转语境语言理解系统所需的专业知识,时间和资源 以及需要构建者进一步输入才能构建单镜头语言理解系统的方法。

    • 3. 发明申请
    • DISTRIBUTED SERVER SYSTEM FOR LANGUAGE UNDERSTANDING
    • 用于语言理解的分布式服务器系统
    • WO2017040436A1
    • 2017-03-09
    • PCT/US2016/049337
    • 2016-08-30
    • MICROSOFT TECHNOLOGY LICENSING, LLC
    • LIU, XiaohuSARIKAYA, Ruhi
    • G06F17/27
    • G06F17/28G06F17/274G06F17/278G06F17/2785G10L15/22G10L15/30
    • Systems and methods for training and using a natural language understanding system are provided. More specifically, the systems and methods train a natural language understanding system utilizing a distributed network of feature extractors on features servers. Further, the systems and methods for using the natural language understanding system utilize a distributed network of features extractor on features servers. Accordingly, the systems and methods provide for a more accurate natural langue understanding system, a more reliable natural langue understanding system, and a more efficient natural langue understanding system. Further, the systems and methods provide for natural language understanding systems with better development (including update ability), productivity, and scalability.
    • 提供了用于培训和使用自然语言理解系统的系统和方法。 更具体地,系统和方法利用特征服务器上的特征提取器的分布式网络训练自然语言理解系统。 此外,使用自然语言理解系统的系统和方法利用特征提取器的分布式网络在特征服务器上。 因此,系统和方法提供了更为准确的天然ue ue理解系统,更可靠的天然ue ue理解系统,以及更有效的天然ue ue理解系统。 此外,系统和方法为自然语言理解系统提供了更好的发展(包括更新能力),生产力和可扩展性。
    • 4. 发明申请
    • BUILDING MULTIMODAL COLLABORATIVE DIALOGS WITH TASK FRAMES
    • 建立与任务框架的多模式协同对话
    • WO2016179126A1
    • 2016-11-10
    • PCT/US2016/030486
    • 2016-05-03
    • MICROSOFT TECHNOLOGY LICENSING, LLC
    • BIKKULA, RaviPANIC, DankoCROOK, PaulKHAN, Omar ZiaSARIKAYA, RuhiSUZUKI, Hisami
    • H04L29/08G06F3/038G06F17/20
    • G06F9/5011G06F3/038G06F9/4881
    • Methods and systems are provided for collaborative completion of tasks using task frames. Upon receiving a request to perform a task, a system utilizes task frames in completing the requested task. A task frame is a data structure that contains the parameters and status signals that represent a particular task and captures the combined system's understanding of a current state of the task. Input is received at a client device and sent to a server, where the input is processed. Based on the processed input, a task frame is retrieved and filled. The filled task frame is sent to the client device, where the client device performs actions based on the task frame and updates the task frame parameters and the state of the task. The updated task frame is returned to the server. The shared task frame provides improvements to the overall task completion process.
    • 提供了使用任务框架协同完成任务的方法和系统。 在接收到执行任务的请求时,系统利用任务帧来完成所请求的任务。 任务框架是包含表示特定任务的参数和状态信号的数据结构,并且捕获组合系统对当前任务状态的理解。 在客户端设备接收到输入,并发送到服务器,处理输入。 基于处理的输入,检索并填充任务帧。 填充的任务帧被发送到客户端设备,其中客户端设备基于任务帧执行动作,并更新任务帧参数和任务的状态。 更新的任务帧返回到服务器。 共享任务框架提供了整个任务完成过程的改进。
    • 5. 发明申请
    • CONTEXT CARRYOVER IN LANGUAGE UNDERSTANDING SYSTEMS OR METHODS
    • 语言学习理解系统或方法
    • WO2016176234A1
    • 2016-11-03
    • PCT/US2016/029410
    • 2016-04-27
    • MICROSOFT TECHNOLOGY LICENSING, LLC
    • BOIES, DanielSARIKAYA, RuhiFEIZOLLAHI, ZhalehXU, Puyang
    • G06Q10/00G06F17/20
    • G06Q10/00G06F17/2785
    • Systems and methods for determining a user intent or goal for contextual language understanding by utilizing information from one or more previous user natural language inputs and one or more previous system generated responses to the user natural language inputs are provided. More specifically, the systems and methods utilize a common schema for determining features from the responses and natural language inputs and provide carryover tracking between responses and the natural language inputs. Accordingly, the systems and methods for contextual language understanding provide for a more accurate, a more reliable, and a more efficient context carryover and goal tracking system when compared to systems and methods that do not utilized the responses in determining the user goal/intent.
    • 提供了通过利用来自一个或多个先前用户自然语言输入的信息和一个或多个先前系统生成的对用户自然语言输入的响应来确定用于语境语言理解的用户意图或目标的系统和方法。 更具体地说,系统和方法利用通用模式来从响应和自然语言输入中确定特征,并提供响应与自然语言输入之间的进位跟踪。 因此,与在确定用户目标/意图时没有使用响应的系统和方法相比,用于语境语言理解的系统和方法提供更准确,更可靠和更有效的上下文携带和目标跟踪系统。
    • 7. 发明申请
    • MULTI-TURN CROSS-DOMAIN NATURAL LANGUAGE UNDERSTANDING SYSTEMS, BUILDING PLATFORMS, AND METHODS
    • 多转向跨领域自然语言理解系统,构建平台和方法
    • WO2018039049A1
    • 2018-03-01
    • PCT/US2017/047463
    • 2017-08-18
    • MICROSOFT TECHNOLOGY LICENSING, LLC
    • SARIKAYA, RuhiKIM, Young-BumROCHETTE, Alexandre
    • G10L15/06G10L15/22
    • Multi-turn cross-domain natural language understanding (NLU) systems and platforms for building the multi-turn cross-domain NLU system are provided. Further, methods for using and building the multi-turn cross-domain NLU system are provided. More specifically, the multi-turn cross-domain NLU system supports multi-turn bot/agent/application scenarios for new domains without having to select a task definition and/or define a new schema during the building of the NLU system. Accordingly, the platform for building the multi-turn cross-domain NLU system that does not require the builder to select a task and/or build a schema for a selected task provides an easy to use, cost effective, and efficient service for building a NLU system. Further, the multi-turn cross-domain NLU system provides a more versatile NLU system than previously utilized NLU systems that were trained for and limited to a selected task and/or domain.
    • 提供了多圈跨领域自然语言理解(NLU)系统和平台,用于构建多圈跨域NLU系统。 此外,提供了用于使用和构建多圈跨域NLU系统的方法。 更具体地说,多转跨域NLU系统支持新域的多回合机器人/代理/应用场景,而无需在NLU系统的构建期间选择任务定义和/或定义新模式。 因此,用于构建不需要构建器为选择的任务选择任务和/或构建模式的多圈跨域NLU系统的平台提供了易于使用,成本有效且高效的服务,用于构建 NLU系统。 此外,多圈跨域NLU系统提供了比先前使用的NLU系统更多功能的NLU系统,NLU系统已经被训练并限于所选任务和/或域。
    • 9. 发明申请
    • TRAINING SYSTEMS AND METHODS FOR SEQUENCE TAGGERS
    • 训练系统和序列标签的方法
    • WO2016133696A1
    • 2016-08-25
    • PCT/US2016/016245
    • 2016-02-03
    • MICROSOFT TECHNOLOGY LICENSING, LLC
    • JEONG, MinwooKIM, Young-BumSARIKAYA, Ruhi
    • G06N7/00G06F17/27
    • G06N99/005G06F17/2705G06F17/2785G06F17/30864G06N7/005
    • Systems and methods for or training a sequence tagger, such as conditional random field model. More specifically, the systems and methods train a sequence tagger utilizing partially labeled data from crowd-sourced data for a specific application and partially labeled data from search logs. Further, the systems and methods disclosed herein train a sequence tagger utilizing only partially labeled by utilizing a constrained lattice where each input value within the constrained lattice can have multiple candidate tags with confidence scores. Accordingly, the systems and methods provide for a more accurate sequence tagging system, a more reliable sequence tagging system, and a more efficient sequence tagging system in comparison to sequence taggers trained utilizing at least some fully-labeled training data.
    • 用于或训练序列标签的系统和方法,如条件随机场模型。 更具体地说,系统和方法使用来自针对特定应用的来自人群的数据的部分标记的数据和来自搜索日志的部分标记的数据来训练序列标签器。 此外,本文公开的系统和方法通过利用受约束的格点仅利用部分标记的序列标签器来训练序列标签器,其中约束格点内的每个输入值可以具有具有置信度分数的多个候选标签。 因此,与使用至少一些完全标记的训练数据训练的序列标签相比,系统和方法提供了更准确的序列标签系统,更可靠的序列标签系统和更有效的序列标签系统。