会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • MODELING INTERESTINGNESS WITH DEEP NEURAL NETWORKS
    • 建立与深层神经网络的兴趣
    • WO2015191652A1
    • 2015-12-17
    • PCT/US2015/034994
    • 2015-06-10
    • MICROSOFT TECHNOLOGY LICENSING, LLC
    • GAO, JianfengDENG, LiGAMON, MichaelHE, XiaodongPANTEL, Patrick
    • G06F17/30
    • G06N3/04G06F17/30967G06N3/0427G06N3/082
    • An "Interestingness Modeler" uses deep neural networks to learn deep semantic models (DSM) of "interestingness." The DSM, consisting of two branches of deep neural networks or their convolutional versions, identifies and predicts target documents that would interest users reading source documents. The learned model observes, identifies, and detects naturally occurring signals of interestingness in click transitions between source and target documents derived from web browser logs. Interestingness is modeled with deep neural networks that map source-target document pairs to feature vectors in a latent space, trained on document transitions in view of a "context" and optional "focus" of source and target documents. Network parameters are learned to minimize distances between source documents and their corresponding "interesting" targets in that space. The resulting interestingness model has applicable uses, including, but not limited to, contextual entity searches, automatic text highlighting, prefetching documents of likely interest, automated content recommendation, automated advertisement placement, etc.
    • “有趣的建模者”使用深层神经网络来学习“趣味性”的深层语义模型(DSM)。 DSM由深度神经网络的两个分支或其卷积版本组成,识别并预测将感兴趣用户阅读源文档的目标文档。 所学习的模型观察,识别和检测从Web浏览器日志导出的源文档和目标文档之间的点击转换中的自然发生的兴趣信号。 有趣的是用深层神经网络建模,将源目标文档对映射到潜在空间中的特征向量,考虑到源文件和目标文档的“上下文”和可选的“焦点”,对文档转换进行了训练。 学习网络参数以最小化源文档与其空间中相应的“有趣”目标之间的距离。 所产生的兴趣模型具有适用的用途,包括但不限于上下文实体搜索,自动文本突出显示,预取可能感兴趣的文档,自动内容推荐,自动广告投放等。