会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • HITLESS SWITCH FOR HIGH-DENSITY INTEGRATED OPTICS
    • 高密度集成光学无缝开关
    • WO2005083486A1
    • 2005-09-09
    • PCT/US2005/002182
    • 2005-01-24
    • MASSACHUSETTS INSTITUTE OF TECHNOLOGYHAUS, Hermann, A.POPOVIC, MilosWATTS, MichaelWONG, Chee, WeiKIMERLING, Lionel, C.
    • HAUS, Hermann, A.POPOVIC, MilosWATTS, MichaelWONG, Chee, WeiKIMERLING, Lionel, C.
    • G02B6/293
    • H04J14/0206G02B6/125G02B6/3536G02B6/3546G02B6/3562G02B6/357G02B6/3576G02B6/3584G02B6/3596G02B2006/12145G02B2006/12159G02F1/3132G02F1/3136H04J14/0204H04J14/0212
    • An optical device includes a first (A) and a second (A') splitting device. Each of the first and second splitting devices have respective first and second input ports, respective first and second output ports, and a respective transfer matrix. A first optical waveguide (84) is optically coupled to the first output port of the first splitting device and the first input port of the second splitting device. A second optical waveguide (83) is optically coupled to the second output port of the first splitting device and the second input port of the second splitting device. The first and second optical waveguides are configured to introduce a phase shift of an optical device includes a first and a second splitting device. Each of the first and second splitting devices have respective first and second input ports, respective first and second output ports, and a respective transfer matrix. A first optical waveguide is optically coupled to the first output port of the first splitting device and the first input port of the second splitting device. A second optical waveguide is optically coupled to the second output port of the first splitting device and the second input port of the second sitting device. The first and second optical waveguides are configured to introduce a phase shift of an optical device includes a first and a second splitting device. Each of the first and second splitting devices have respective first and second input ports, respective first and second output ports, and a respective transfer matrix. A first optical waveguide is optically coupled to the first output port of the first splitting device and the first input port of the second splitting device. A second optical waveguide is optically coupled to the second output port of the first splitting device and the second input port of the second splitting device. The first and second optical waveguides are configured to introduce a phase shift of π radians to the optical radiation propagating through the first optical waveguide with respect to the optical radiation propagating through the second optical waveguide. The transfer matrix of the second splitting device is the diagonal transpose of the transfer matrix of the first splitting de vice and the transfer matrix of the second splitting device is substantially different from the transfer matrix of the first splitting device.
    • 光学装置包括第一(A)和第二(A')分割装置。 第一和第二分离装置中的每一个具有相应的第一和第二输入端口,相应的第一和第二输出端口以及相应的传输矩阵。 第一光波导(84)光耦合到第一分离装置的第一输出端口和第二分离装置的第一输入端口。 第二光波导(83)光耦合到第一分离装置的第二输出端口和第二分离装置的第二输入端口。 第一和第二光波导被配置为引入光学器件的相移包括第一和第二分离器件。 第一和第二分离装置中的每一个具有相应的第一和第二输入端口,相应的第一和第二输出端口以及相应的传输矩阵。 第一光波导光学耦合到第一分离装置的第一输出端口和第二分离装置的第一输入端口。 第二光波导光学耦合到第一分离装置的第二输出端口和第二坐便装置的第二输入端口。 第一和第二光波导被配置为引入光学器件的相移包括第一和第二分离器件。 第一和第二分离装置中的每一个具有相应的第一和第二输入端口,相应的第一和第二输出端口以及相应的传输矩阵。 第一光波导光学耦合到第一分离装置的第一输出端口和第二分离装置的第一输入端口。 第二光波导光学地耦合到第一分离装置的第二输出端口和第二分离装置的第二输入端口。 第一和第二光波导被配置为相对于通过第二光波导传播的光辐射,将pi弧度的相移引入通过第一光波导传播的光辐射。 第二分割装置的传送矩阵是第一分割装置的传送矩阵的对角线转置,并且第二分割装置的传送矩阵与第一分割装置的传送矩阵基本不同。
    • 2. 发明申请
    • METHODS AND APPARATUS FOR VERTICAL COUPLING FROM DIELECTRIC WAVEGUIDES
    • 用于从电介质波形垂直耦合的方法和装置
    • WO2013148208A1
    • 2013-10-03
    • PCT/US2013/030987
    • 2013-03-13
    • MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    • YAACOBI, AmiSUN, JieWATTS, Michael
    • G02B6/10G02B6/38G02B6/36
    • G02B6/264G02B6/12007G02B6/1226G02B6/124G02B6/26G02B6/305
    • A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a S1YV4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., > 300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low- index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.
    • 频率啁啾的纳米天线从介质波导提供有效的亚波长垂直发射。 在一个示例中,该纳米天线包括在距离接地平面的S1YV4波导的相对侧上的一组等离子体偶极子。 所产生的结构小于一半波长,发射可耦合到光纤中的宽带光束(例如> 300nm)。 在一些实施例中,具有不均匀形状的高折射率和低折射率介电材料区域的衍射光学元件准直宽带光束以实现更高的耦合效率。 在一些情况下,纳米天线和衍射光学元件之间的负透镜元件加速了发射光束的发散(并提高耦合效率),从而允许更紧凑的封装。 像衍射光学元件一样,负透镜元件包括高折射率和低折射率介电材料的不均匀形状的区域,其可被设计为补偿由纳米天线发射的光束中的像差。