会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • TEMPLATE-BASED ANALYSIS AND CLASSIFICATION OF CARDIOVASCULAR WAVEFORMS
    • 基于模板的心血管波形分析与分类
    • WO2017220353A1
    • 2017-12-28
    • PCT/EP2017/064218
    • 2017-06-12
    • KONINKLIJKE PHILIPS N.V.
    • GHOSH, ErinaPOTES BLANDON, Cristhian MauricioGREGG, Richard Earl
    • A61B5/0456A61B5/0452A61B5/00A61B5/04A61B5/0215A61B5/0295A61B5/0468A61B5/0472
    • In various embodiments, a first classification assigned to a periodic component of an electrical waveform that represents electrical activity in a patient's heart may be identified (302). A corresponding periodic component of a hemodynamic waveform that represents hemodynamic activity in the patient's cardiovascular system may be analyzed (306, 318, 328). The corresponding periodic component may be causally related to the periodic component of the electrical waveform. Based on the analysis, the previously-assigned classification may be assigned (312, 324) to the corresponding periodic component of the hemodynamic waveform in response to a determination, based on the analyzing, that the previously-assigned classification also applies to the corresponding periodic component. In a database (130) of hemodynamic templates, a hemodynamic template associated with the previously-assigned classification may be updated (314) to include one or more features of the corresponding periodic component of the hemodynamic waveform.
    • 在各种实施例中,可以识别(302)分配给表示患者心脏中的电活动的电波形的周期性分量的第一分类。 可以分析代表患者心血管系统中血液动力学活性的血液动力学波形的相应周期分量(306,318,328)。 相应的周期性分量可能与电波形的周期性分量有因果关系。 基于该分析,响应于基于该分析的确定,先前分配的分类可以被分配(312,324)到血液动力波形的对应周期分量,即先前分配的分类也适用于相应的周期 零件。 在血液动力学模板的数据库(130)中,与先前分配的分类相关联的血液动力学模板可以被更新(314)以包括血液动力学波形的对应周期性分量的一个或多个特征。
    • 3. 发明申请
    • METHOD TO QUANTIFY PHOTOPLETHYSMOGRAM (PPG) SIGNAL QUALITY
    • 量化光电图(PPG)信号质量的方法
    • WO2017089921A1
    • 2017-06-01
    • PCT/IB2016/056762
    • 2016-11-10
    • KONINKLIJKE PHILIPS N.V.
    • GHOSH, ErinaPOTES BLANDON, Cristhian Mauricio
    • A61B5/00A61B5/024A61B5/0245A61B5/0456A61B5/021G06K9/00
    • A61B5/7203A61B5/02116A61B5/02125A61B5/02416A61B5/0245A61B5/0456A61B5/7221A61B5/7246A61B5/7264G06K9/0053G06K9/00543
    • When evaluating the quality of photoplethysmography (PPG) signal (52) measured from a patient monitor (e.g., a finger sensor or the like), multiple features of the PPG signal are extracted and analyzed to facilitate assigning a score to the PPG signal or portions (e.g., heartbeats) thereof. Heartbeats in the PPG signal are segmented out using concurrently captured electrocardiograph (ECG) signal (50), and for each heartbeat, a plurality of extracted features are analyzed. If all extracted features satisfy one or more predetermined criteria for each feature, then the heartbeat waveform is compared to a predefined heartbeat template. If the waveform matches the template (e.g., within a predetermined match percentage or the like), then the heartbeat is classified as "clean." If the heartbeat does not patch the template, or if one or more of the extracted features fails to satisfy its one or more predetermined criteria, the heartbeat is classified as "noisy."
    • 当评估从患者监测器(例如,手指传感器等)测量的光电容积脉搏波图(PPG)信号(52)的质量时,提取并分析PPG信号的多个特征以便于指派 对PPG信号或其部分(例如,心跳)的评分。 使用同时捕获的心电图(ECG)信号(50)分割出PPG信号中的心跳,并且对于每个心跳,分析多个提取的特征。 如果所有提取的特征满足每个特征的一个或多个预定标准,则将心跳波形与预定义的心跳模板进行比较。 如果波形与模板匹配(例如,在预定的匹配百分比等内),则心跳被分类为“干净”。 如果心跳不修补模板,或者如果一个或多个提取的特征不能满足其一个或多个预定标准,则心跳被分类为“嘈杂”。
    • 6. 发明申请
    • ELECTRONIC CLINICAL DECISION SUPPORT DEVICE BASED ON HOSPITAL DEMOGRAPHICS
    • 基于医院人口统计的电子临床决策支持装置
    • WO2018029028A1
    • 2018-02-15
    • PCT/EP2017/069365
    • 2017-08-01
    • KONINKLIJKE PHILIPS N.V.
    • CONROY, BryanPOTES BLANDON, Cristhian MauricioXU, Minnan
    • G06F19/00
    • An electronic clinical decision support (CDS) device (10) employs a trained CDS algorithm (30) that operates on values of a set of covariates to output a prediction of a medical condition. The CDS algorithm was trained on a training data set (22). The CDS device includes a computer (12) that is programmed to provide a user interface (62) for completing clinical survey questions using the display and the one or more user input devices. Marginal probability distributions (42) for the covariates of the set of covariates are generated from the completed clinical survey questions. The trained CDS algorithm is adjusted for covariate shift using the marginal probability distributions. A prediction of the medical condition is generated for a medical subject using the trained CDS algorithm adjusted for covariate shift (50) operating on values for the medical subject of the covariates of the set of covariates.
    • 电子临床决策支持(CDS)设备(10)采用训练的CDS算法(30),其对一组协变量的值进行操作以输出医学病症的预测。 CDS算法在训练数据集上训练(22)。 CDS装置包括计算机(12),其被编程为提供用于使用显示器和一个或多个用户输入装置完成临床调查问题的用户界面(62)。 完成的临床调查问题产生协变量组的协变量的边际概率分布(42)。 使用边际概率分布对训练后的CDS算法进行协变量调整。 使用训练后的CDS算法针对协变量(50)进行调整以针对协变量集合的协变量的医学主题的值进行操作,为医学对象生成医学状况的预测。