会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SEARCH DIMENSIONALITY EXPANSION
    • 搜索尺寸扩展
    • WO2018004793A1
    • 2018-01-04
    • PCT/US2017/028634
    • 2017-04-20
    • INTEL CORPORATION
    • COHEN, RafiLEBEDEV, DganitVAINAS, Oded
    • G06F17/30
    • G06F16/24534G06F16/29G06F16/9535G06F16/9537
    • System and techniques for search dimensionality expansion are described herein. A history of intelligent agent activity may be received. A search result generated by an external entity may be obtained that includes a set of geographic points of interest (POI). A geographic segment may be retrieved from a geographic segment library when the geographic segment contains a member of the set of POI. Here, the geographic segment defines a geographic area and a dimension set. The search result may be modified to create a modified search result that includes a member of the dimension set. The modified search result may then be transmitted to a user device.
    • 这里描述了用于搜索维度扩展的系统和技术。 智能代理活动的历史可能会收到。 可以获得由外部实体生成的搜索结果,其包括一组地理兴趣点(POI)。 当地理片段包含该组POI的成员时,可从地理片段库检索地理片段。 这里,地理部分定义了一个地理区域和一个维度集。 搜索结果可以被修改以创建包括维度集的成员的修改的搜索结果。 然后可以将修改的搜索结果发送给用户设备。
    • 3. 发明申请
    • CONTEXTUAL MODEL-BASED EVENT RESCHEDULING AND REMINDERS
    • 基于模型的基于事件的事件再次提醒和提醒
    • WO2017222695A1
    • 2017-12-28
    • PCT/US2017/033339
    • 2017-05-18
    • INTEL CORPORATION
    • SOFFER, Ronen AharonVAINAS, OdedILAN, GiliSAGI, NoamGREENFELD, Merav
    • H04M1/725H04M3/487
    • G06Q10/1095
    • Various techniques for performing contextual event rescheduling with an event scheduling service are disclosed herein. In an example, data is processed at an event scheduling service, based on the use of a trained machine learning model that is specific to a user. This model is operated by the event scheduling service determine a contextual action option for rescheduling an electronic communication event at a proposed time with proposed scheduling parameters. The model may identify the proposed time and event scheduling parameters, from data indicating a user state, or external data, in addition to a semantic text option (such as "Call Back After Meeting") corresponding to the proposed time and event scheduling parameters. Further examples to evaluate user activity and identify reschedule options based on data inputs from a user's mobile computing device, wearable sensors, and external weather, traffic, or event data sources, are also disclosed.
    • 这里公开了用于利用事件调度服务执行上下文事件重调度的各种技术。 在一个示例中,基于使用特定于用户的经过训练的机器学习模型,在事件调度服务处处理数据。 该模型由事件调度服务操作,确定用于在提出的时间用所提出的调度参数重新调度电子通信事件的上下文动作选项。 除了与建议的时间和事件调度参数相对应的语义文本选项(诸如“会议后回拨”)之外,该模型还可以根据指示用户状态的数据或外部数据来识别提出的时间和事件调度参数 。 还公开了基于来自用户的移动计算设备,可穿戴传感器以及外部天气,交通或事件数据源的数据输入来评估用户活动并识别重新安排选项的其他示例。
    • 4. 发明申请
    • CONTEXTUAL MODEL-BASED EVENT SCHEDULING
    • 基于模型的背景事件调度
    • WO2017222693A1
    • 2017-12-28
    • PCT/US2017/033306
    • 2017-05-18
    • INTEL CORPORATION
    • ILAN, GiliSAGI, NoamSHARON, GilVAINAS, OdedSOFFER, Ronen, Aharon
    • G06F9/38G06N99/00
    • Various techniques for performing contextual event scheduling with an event scheduling service are disclosed herein. In an example, data is processed at an event scheduling service, based on the use of a trained machine learning model that is specific to a user. This trained machine learning model is operated by the event scheduling service determine a proposed time and proposed scheduling parameters based on the contextual information, to identify a proposed event time and event scheduling parameters based on the model, the data indicating a user state, or external data. Further examples to evaluate user activity and identify schedule characteristics based on data inputs from a user's mobile computing device, wearable sensors, and external weather, traffic, or event data sources, are also disclosed.
    • 这里公开了用于利用事件调度服务执行上下文事件调度的各种技术。 在一个示例中,基于使用特定于用户的经过训练的机器学习模型,在事件调度服务处处理数据。 该事件调度服务根据上下文信息确定提出的时间和提出的调度参数,基于该模型识别提议的事件时间和事件调度参数,该指示用户状态的数据或外部 数据。 还公开了基于来自用户的移动计算设备,可穿戴传感器以及外部天气,交通或事件数据源的数据输入来评估用户活动并识别时间表特征的其他示例。