会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • LANDMARK-BASED LOCATION BELIEF TRACKING
    • 基于LANDMARK的位置直接跟踪
    • WO2013166190A3
    • 2013-12-27
    • PCT/US2013039121
    • 2013-05-01
    • HONDA MOTOR CO LTDRAUX ANTOINEGUPTA RAKESHRAMACHANDRAN DEEPAKMA YI
    • RAUX ANTOINEGUPTA RAKESHRAMACHANDRAN DEEPAKMA YI
    • G10L15/18
    • G01C21/26G01C21/3608G01C21/3644
    • An utterance is received from a user specifying a location attribute and a landmark. A set of candidate locations is identified based on the specified location attribute, and a confidence score can be determined for each candidate location. A set of landmarks is identified based on the specified landmark, and confidence scores can be determined for the landmarks. An associated kernel model is generated for each landmark. Each kernel model is centered at the location of the associated landmark on a map, and the amplitude of the kernel model can be based on landmark attributes, landmark confidence scores, characteristics of the user, and the like. The candidate locations are ranked based on the amplitudes of overlapping kernel models at the candidate locations, and can also be ranked based on confidence scores associated with the candidate locations. The resulting candidate location is selected and presented to the user.
    • 从指定位置属性和地标的用户接收到话语。 基于指定的位置属性来识别一组候选位置,并且可以为每个候选位置确定可信度得分。 基于指定的地标识别一组地标,并且可以为地标确定置信度得分。 为每个地标生成相关的内核模型。 每个核心模型集中在地图上相关联的地标的位置,并且内核模型的幅度可以基于地标属性,地标置信度得分,用户特征等。 候选位置基于候选位置处的重叠核心模型的幅度进行排序,并且还可以基于与候选位置相关联的置信度得分进行排名。 所得到的候选位置被选择并呈现给用户。
    • 2. 发明申请
    • FAMILIARITY MODELING
    • 亲善模型
    • WO2015013042A2
    • 2015-01-29
    • PCT/US2014046062
    • 2014-07-10
    • HONDA MOTOR CO LTDGUPTA RAKESHKARPOV IGORRAUX ANTOINERAMACHANDRAN DEEPAK
    • GUPTA RAKESHKARPOV IGORRAUX ANTOINERAMACHANDRAN DEEPAK
    • G06F17/50G06N7/00
    • G01C21/00G01C21/3484G01C21/3641G06N99/005
    • One or more embodiments of techniques or systems for modeling familiarity for a traveler are provided herein. Familiarity evidence can be received, indicative of how familiar a traveler is with an area or road segment, and based on a number of visits the traveler has made to that area. The familiarity evidence can be used to generate one or more familiarity models indicative of a predicted familiarity of locations around the area. Familiarity models can be based on kernels, graph distances, Markov random fields (MRFs), etc. When route directions are generated from an origin location to a destination location, one or more of the directions can be provided based on one or more of the familiarity models. For example, if a familiarity model indicates that a traveler is familiar with a route, driving directions of the route can be adapted to be more succinct.
    • 这里提供了用于对旅行者建模熟悉度的技术或系统的一个或多个实施例。 可以收到熟悉证据,表明旅行者对某个地区或路段的熟悉程度,以及旅行者对该地区进行的多次访问。 熟悉性证据可用于生成一个或多个熟悉模型,表明该地区周围位置的预测熟悉度。 熟悉度模型可以基于内核,图距离,马尔可夫随机场(MRF)等。当从原点位置到目的地点生成路线方向时,可以基于一个或多个方向来提供一个或多个方向 熟悉模型。 例如,如果熟悉模型指示旅行者熟悉路线,则可以调整路线的行驶方向以更简洁。