会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • PREDICTING ACCESS POINT AVAILABILITY
    • 预测接入点可用性
    • WO2016141525A1
    • 2016-09-15
    • PCT/CN2015/073871
    • 2015-03-09
    • HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.WANG, ShuaiYU, XiaofengXIE, Junqing
    • WANG, ShuaiYU, XiaofengXIE, Junqing
    • H04W48/20
    • H04W48/20H04B17/318H04B17/373H04W48/16H04W48/18
    • Examples relate to predicting access point availability. In one example, a computing device may: obtain a set of training fingerprints, each training fingerprint specifying, for a client device, an access point to which the client device successfully connected and cellular signal strength for each cellular tower in a set of cellular towers; and for each access point: generate an access point profile for the access point, the access point profile indicating, for each cellular tower in the set of cellular towers specified by a first subset of the set of training fingerprints, a probability that a randomly selected training fingerprint included in the first subset specified a particular cellular signal strength for the cellular tower, wherein each training fingerprint included in the first subset specifies the access point as the access point to which the client device specified by the training fingerprint included in the first subset successfully connected.
    • 示例涉及预测接入点可用性。 在一个示例中,计算设备可以:获得一组训练指纹,每个训练指纹为客户端设备指定客户端设备成功连接的接入点,以及蜂窝小区中的每个蜂窝塔的蜂窝信号强度 ; 并且对于每个接入点:为接入点生成接入点简档,对于由该组训练指纹集合的第一子集指定的蜂窝小组集合中的每个蜂窝塔,接入点简档指示随机选择的概率 包括在第一子集中的训练指纹指定用于蜂窝塔的特定蜂窝信号强度,其中包括在第一子集中的每个训练指纹将接入点指定为由包括在第一子集中的训练指纹指定的客户端设备的接入点 成功连接。
    • 4. 发明申请
    • PREDICTING AVAILABLE ACCESS POINTS
    • 预测可用的访问点
    • WO2016141527A1
    • 2016-09-15
    • PCT/CN2015/073874
    • 2015-03-09
    • HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.WANG, ShuaiYU, XiaofengXIE, Junqing
    • WANG, ShuaiYU, XiaofengXIE, Junqing
    • H04W64/00
    • H04W64/003G01S5/0252
    • Examples relate to predicting available access points. In one example, a computing device may: obtain a set of training fingerprints, each training fingerprint specifying, for a client device, i) a set of access points, and ii) cellular signal strength measurements for each cellular tower in a set of cellular towers; generate a plurality of classes based on the set of training fingerprints, each class specifying at least one access point, the access points of each class corresponding to the set of access points specified by at least one training fingerprint, and each combination being different from combinations specified by each other class in the plurality of classes; and train a predictive model to receive, as input, an input fingerprint specifying a cellular signal strength measurement for each cellular tower in a set of input cellular towers and produce, as output, at least one of the plurality of classes.
    • 示例涉及预测可用接入点。 在一个示例中,计算设备可以:获得一组训练指纹,每个训练指纹针对客户端设备指定i)一组接入点,以及ii)一组蜂窝中每个蜂窝塔的蜂窝信号强度测量 塔; 基于所述训练指纹集合生成多个类别,每个类别指定至少一个接入点,每个类别的接入点对应于由至少一个训练指纹指定的所述一组接入点,并且每个组合与组合不同 由多个类中的每个其他类指定; 并且训练预测模型以接收指定在一组输入蜂窝塔中的每个蜂窝塔的蜂窝信号强度测量的输入指纹,并输出所述多个类别中的至少一个。
    • 6. 发明申请
    • RANK AGGREGATION BASED ON MARKOV MODEL
    • 基于MARKOV模型的RANK聚合
    • WO2016015267A1
    • 2016-02-04
    • PCT/CN2014/083379
    • 2014-07-31
    • HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.YU, XiaofengXIE, Junqing
    • YU, XiaofengXIE, Junqing
    • G06F17/30
    • G06F17/30687G06F17/18G06F17/30864
    • Rank aggregation based on a Markov model is disclosed. One example is a system including a query processor, at least two information retrievers, a Markov model, and an evaluator. The query processor receives a query via a processing system. Each of the at least two information retrievers retrieves a plurality of document categories responsive to the query, each of the plurality of document categories being at least partially ranked. The Markov model generates a Markov process based on the at least partial rankings of the respective plurality of document categories. The evaluator determines, via the processing system, an aggregate ranking for the plurality of document categories, the aggregate ranking based on a probability distribution of the Markov process.
    • 公布了基于马尔科夫模型的排名聚合。 一个示例是包括查询处理器,至少两个信息检索器,马尔可夫模型和评估器的系统。 查询处理器通过处理系统接收查询。 所述至少两个信息检索器中的每一个检索响应于所述查询的多个文档类别,所述多个文档类别中的每一个至少部分地被分级。 马尔可夫模型基于相应的多个文档类别的至少部分排名来生成马尔可夫过程。 评估者通过处理系统确定多个文档类别的综合排名,基于马尔可夫过程的概率分布的总体排名。