会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • CHARACTERIZING COLOR INPUT DEVICES WITH WELL-BEHAVED EXTRAPOLATION
    • 表征有色输入设备与有缺陷的外推
    • WO2005114981A2
    • 2005-12-01
    • PCT/US2005/014647
    • 2005-04-29
    • CANON KABUSHIKI KAISHATIN, Siu-Kei
    • TIN, Siu-Kei
    • H04N1/56
    • H04N1/6016H04N1/56
    • The present invention generates a color characterization model for performing transformation from a device-dependent color space of a color device to a device-independent color space. A first set of color measurement data is accessed corresponding to actual measurements of the color device, wherein the actual measurements define a measurement range in the device-dependent color space, and wherein the measurement data includes data point pairs, each data point pair having corresponding device-dependent values and device-independent values. Next, a second set of data point pairs is generated based on a predesignated set of device-dependent values outside the measurement range, by extrapolating device-independent values from the first set of color measurement data. The color characterization model is then determined based on both the first set of color measurement data and the generated second set of data point pairs. Because the color characterization model is determined based on actual measurements and extrapolated values, the color characterization model is well­behaved and does not exhibit significant overshooting or undershooting beyond the measurement range.
    • 本发明产生用于执行从颜色设备的依赖于设备的颜色空间到与设备无关的颜色空间的变换的颜色表征模型。 对应于彩色设备的实际测量访问第一组颜色测量数据,其中实际测量定义了与设备相关的色彩空间中的测量范围,并且其中测量数据包括数据点对,每个数据点对具有对应的 设备相关值和设备无关值。 接下来,通过外推与第一组颜色测量数据相关的与设备无关的值,基于预定指定的与测量范围之外的设备相关值的集合来生成第二组数据点对。 然后基于第一组颜色测量数据和所生成的第二组数据点对来确定颜色表征模型。 因为颜色表征模型是基于实际测量和外推值确定的,所以颜色表征模型是健康的,并且不会出现超出测量范围的显着过冲或下冲。
    • 2. 发明申请
    • CHARACTERIZATION OF DISPLAY DEVICES BY AVERAGING CHROMATICITY VALUES
    • 通过平均色度值来表征显示器件
    • WO2005114552A1
    • 2005-12-01
    • PCT/US2005/013608
    • 2005-04-21
    • CANON KABUSHIKI KAISHATIN, Siu-Kei
    • TIN, Siu-Kei
    • G06K9/00
    • G09G5/02G09G2320/0693G09G2360/145H04N1/6033H04N9/73H04N17/02H04N17/04
    • The present invention provides a method for characterizing display devices. Initially, a plurality of colors are generated on the display device. The generated colors are measured and a black point and a white point are determined. The measured colors are then corrected for the determined black point in order to obtain a plurality of chromaticity values. The chromaticity values of the corrected color values are averaged, and a tristimulus matrix is generated with the averaged chromaticity values and the determined white point. By averaging the chromaticity values of black-point-corrected measurements, the present invention is able to create more accurate display device characterizations that account for the effects of flare. In addition, by averaging the chromaticity values of black-point-corrected measurements, the present invention minimizes the effects of inaccurate color measurements made during the device characterization process.
    • 本发明提供一种表征显示装置的方法。 最初,在显示装置上生成多种颜色。 测量生成的颜色,并确定黑点和白点。 然后对所确定的黑点校正所测量的颜色,以获得多个色度值。 校正的色值的色度值被平均,并且产生具有平均色度值和所确定的白点的三刺激矩阵。 通过平均黑点校正测量的色度值,本发明能够创建更准确的显示装置表征,其说明了耀斑的影响。 此外,通过平均黑点校正测量的色度值,本发明使得在器件表征过程中进行的不精确的颜色测量的影响最小化。
    • 3. 发明申请
    • COLOR CORRECTION FOR DIGITAL IMAGES
    • 数字图像的彩色校正
    • WO2012040162A1
    • 2012-03-29
    • PCT/US2011/052296
    • 2011-09-20
    • CANON KABUSHIKI KAISHATIN, Siu-Kei
    • TIN, Siu-Kei
    • G09G5/02
    • H04N1/60
    • Colors in a color image are transformed by a destination device. The color image comprises pixels with color information. A depth map corresponding to the color image is accessed. The depth map comprises depth information for the color image and indicates the relative position of objects in the color image from a reference point of view. A collection of plural different color transforms is accessed. In addition, a depth value for a target pixel in the color image is determined by using the depth map. There is a selection of a color transform for the target pixel from the collection of plural different color transforms, based on the depth value determined for the target pixel. The selected color transform is applied to the color information of the target pixel by the destination device.
    • 彩色图像中的颜色由目标设备转换。 彩色图像包括具有彩色信息的像素。 访问与彩色图像对应的深度图。 深度图包括彩色图像的深度信息,并且从参考的角度指示对象在彩色图像中的相对位置。 访问多个不同颜色变换的集合。 此外,通过使用深度图来确定彩色图像中的目标像素的深度值。 基于为目标像素确定的深度值,从多个不同颜色变换的集合中选择针对目标像素的颜色变换。 所选择的颜色变换被目标设备应用于目标像素的颜色信息。
    • 4. 发明申请
    • COLOR CHARACTERIZATION USING NONLINEAR REGRESSION
    • 使用非线性回归的颜色特征
    • WO2005114641A2
    • 2005-12-01
    • PCT/US2005/014646
    • 2005-04-29
    • CANON KABUSHIKI KAISHATIN, Siu-Kei
    • TIN, Siu-Kei
    • G09G5/02
    • H04N1/60
    • A color characterization process utilizing nonlinear regression analysis to characterize a color input device. The color input device is used to generate a bitmap of device dependent values from a color target. The bitmap of device dependent color values is used to generate a forward model that maps device dependent color values to color values in a device independent color space using a nonlinear regression analysis that minimizes a color difference metric between the reference color values and the set of device dependent color values mapped through the forward model. The color difference metric is chosen to represent human perceived color differences in the device independent color space. The performance of the nonlinear regression analysis may be improved by initializing the nonlinear regression analysis using an initial forward model generated from a linear regression analysis.
    • 使用非线性回归分析来表征颜色输入设备的颜色表征过程。 颜色输入设备用于从颜色目标生成与设备相关的值的位图。 设备相关颜色值的位图用于生成将设备相关颜色值映射到设备独立颜色空间中的颜色值的正向模型,该非线性回归分析使参考颜色值和设备组之间的色差度量最小化 通过前向模型映射的依赖颜色值。 选择色差度量来表示设备独立颜色空间中人感知的颜色差异。 通过使用从线性回归分析产生的初始正向模型初始化非线性回归分析可以提高非线性回归分析的性能。
    • 5. 发明申请
    • STEREOSCOPIC COLOR MANAGEMENT
    • 立体颜色管理
    • WO2011075443A1
    • 2011-06-23
    • PCT/US2010/060118
    • 2010-12-13
    • CANON KABUSHIKI KAISHATIN, Siu-Kei
    • TIN, Siu-Kei
    • G09G5/02
    • H04N13/133H04N13/15
    • Stereoscopic color management of images with plural views. Image data for each view is defined in a component input device color space. Image data in the component input device color spaces is converted to a nominal source color space using plural input transforms each corresponding to one of the plural views. A rendering transform is used to convert image data for each view in the nominal source color space to a nominal destination color space. The nominal source color space, nominal destination color space and rendering transform are the same for all views. The image data for each view in the nominal destination color space is ultimately converted to a component output device color space associated with a stereoscopic output device respective of the view using a respective output transform.
    • 具有多视图的立体视觉颜色管理。 每个视图的图像数据在组件输入设备颜色空间中定义。 使用与多个视图中的一个相对应的多个输入变换将分量输入装置色彩空间中的图像数据转换为标称源色彩空间。 渲染变换用于将标称源色彩空间中的每个视图的图像数据转换为标称目标色彩空间。 标称源色彩空间,标称目标颜色空间和渲染变换对于所有视图都是相同的。 在标称目标色彩空间中的每个视图的图像数据最终被转换成与使用相应输出变换的视图相对应的立体输出设备相关联的分量输出设备颜色空间。
    • 7. 发明申请
    • DYNAMIC GENERATION OF COLOR LOOK-UP TABLES
    • 颜色查看表的动态生成
    • WO2005065092A2
    • 2005-07-21
    • PCT/US2004/038938
    • 2004-11-22
    • CANON KABUSHIKI KAISHAALTENHOF-LONG, CameronTIN, Siu-Kei
    • ALTENHOF-LONG, CameronTIN, Siu-Kei
    • G06K9/00H04N1/60
    • G06K9/00H04N1/60
    • Creating a look-up table which converts color image data from a device-independent color space to a device-dependent color space, by determining a range of lightness values corresponding to a lightness value of a target data point in device-independent color space, searching a predetermined set of data points in device-independent color space to obtain a selected set of data points, each selected data point having a lightness value within the determined range of lightness values and having corresponding device-dependent component values within a predetermined tolerance level of the component values of a previously-determined device-dependent data point, performing a weighted interpolation on the device-dependent component values corresponding to the selected set of data points to calculate an interpolated data point which is in device-dependent color space, and entering the interpolated device-dependent data point into a look-up table entry corresponding to the device-independent target data point.
    • 通过在与设备无关的色彩空间中确定与目标数据点的亮度值相对应的亮度值的范围,创建查找表,该查找表将彩色图像数据从与设备无关的色彩空间转换为与设备有关的色彩空间, 搜索与设备无关的颜色空间中的预定的一组数据点以获得所选择的一组数据点,每个所选择的数据点具有所确定的亮度值范围内的亮度值,并且具有在预定公差等级内的对应的依赖于设备的分量值 对先前确定的设备相关数据点的分量值进行加权内插,对与所选择的数据点集合相对应的与设备有关的分量值进行加权内插,以计算处于设备相关的色彩空间的内插数据点;以及 将内插的与设备相关的数据点输入到与设备无关的容器对应的查找表条目中 t数据点。
    • 8. 发明申请
    • GENERATING AN INTERIM CONNECTION SPACE FOR SPECTRAL DATA
    • 产生用于光谱数据的中间连接空间
    • WO2009070220A1
    • 2009-06-04
    • PCT/US2008/012870
    • 2008-11-18
    • CANON KABUSHIKI KAISHATIN, Siu-Kei
    • TIN, Siu-Kei
    • G03F3/08
    • H04N1/603H04N1/54
    • Generation of an Interim Connection Space for spectral data In a full spectral space Is provided. A set of linear maps is accessed, each linear map characterizing a linear transformation from the full spectral space to a colorimetric space, and spectral measurement data is accessed. The linear maps can for example be determined by a set of illuminants. The full spectral space is decomposed into a first subspace that minimizes a loss of a spectral component in the spectral measurement data under a projection along a second subspace onto the first subspace. The second subspace is a null subspace of the set of linear maps. The Interim Connection Space is generated based on the first subspace. The Interim Connection Space can include, for example, a linear map characterizing a linear transformation from the Interim Connection Space to the full spectral space.
    • 生成光谱数据的临时连接空间提供完整的光谱空间。 访问一组线性映射,每个线性映射表征从全谱空间到比色空间的线性变换,并访问光谱测量数据。 线性图可以例如由一组光源确定。 完整光谱空间被分解成第一子空间,其使沿着第二子空间到第一子空间的投影下的光谱测量数据中的光谱分量的损失最小化。 第二个子空间是一组线性映射的空子空间。 中间连接空间是基于第一个子空间生成的。 临时连接空间可以包括例如表征从临时连接空间到完整光谱空间的线性变换的线性映射。
    • 9. 发明申请
    • COLOR CHARACTERIZATION OF PROJECTORS
    • 投影机颜色特征
    • WO2006039023A2
    • 2006-04-13
    • PCT/US2005/030612
    • 2005-08-26
    • CANON KABUSHIKI KAISHATIN, Siu-Kei
    • TIN, Siu-Kei
    • G09G5/02
    • G09G5/02G01J3/46G01J3/462G01J3/506G09G3/001G09G2360/145
    • The present invention transforms a device-dependent color value in a device-dependent color space of a display device to a device-independent color value in a device-independent color space. A first color value is determined in a perceptually linear color space by applying a matrix model to the device-dependent color value, the matrix model applying a tone curve correction and a tristimulus matrix to the device-dependent color value. A difference value is then determined in the perceptually linear color space, wherein the difference value is determined by applying a difference model to the device-dependent color value, and wherein the difference model models deviation of the matrix model from actual measurements of the display device. Next, the difference value and the first color value are added and the sum is transformed to the device-independent color space. Because the first value based on the matrix model is added to a difference value which accounts for deviation of the matrix model, the present invention can account for the channel interdependency prevalent in DLP display devices.
    • 本发明将设备相关的显示设备的色彩空间中的设备相关的颜色值转换为与设备无关的颜色空间中与设备无关的颜色值。 通过将矩阵模型应用于依赖于设备的颜色值,矩阵模型将色调曲线校正和三刺激矩阵应用于与设备相关的颜色值,在感知线性颜色空间中确定第一颜色值。 然后在感知线性颜色空间中确定差值,其中通过将差异模型应用于与设备相关的颜色值来确定差值,并且其中差分模型将矩阵模型与显示设备的实际测量值的偏差建模 。 接下来,添加差值和第一颜色值,并将和转换为与设备无关的颜色空间。 由于将基于矩阵模型的第一值加到考虑了矩阵模型的偏差的差分值,所以本发明可以解释在DLP显示装置中普遍存在的信道相互依赖性。
    • 10. 发明申请
    • COLOR CHARACTERIZATION WITH ENHANCED PURITY
    • 颜色特征与增强纯度
    • WO2005109855A2
    • 2005-11-17
    • PCT/US2005/014648
    • 2005-04-29
    • CANON KABUSHIKI KAISHATIN, Siu-Kei
    • TIN, Siu-Kei
    • H04N1/60
    • H04N1/6011
    • The present invention creates a color transform for transforming color image data from a device-independent color space to a device-dependent color space of a color device. A forward model is accessed which transforms color image data from the device-dependent color space to the device-independent color space. The forward model is iteratively inverted to obtain a plurality of distinct device-dependent data point value sets, wherein the device-dependent data point value sets are colorimetrically identical to each other in the device-independent color space. One device-dependent data point value set is then selected from the plurality of distinct device-dependent data point value sets based on the application of a color purity function to the plurality of distinct device-dependent data point value sets. The color transform is populated with the selected device-dependent data point value set. Because one device-dependent data point value set is selected from the plurality of obtained distinct device-dependent data point value sets based on the application of a color purity function, the inverse color transform provides the best color estimate among all color candidates that are colorimetrically equivalent, and accurately recovers original device-dependent color space values.
    • 本发明创建了一种用于将彩色图像数据从与设备无关的颜色空间转换为彩色设备的依赖于设备的颜色空间的颜色变换。 访问正向模型,其将彩色图像数据从与设备相关的颜色空间转换为与设备无关的颜色空间。 正向模型被迭代地反转以获得多个不同的依赖于设备的数据点值集合,其中与设备无关的颜色空间中的依赖于设备的数据点集合在颜色上彼此相同。 然后,基于色纯度函数对多个不同的设备相关数据点值集合的应用,从多个不同的依赖于设备的数据点集合中选择一个依赖于设备的数据点集合。 颜色变换用所选择的依赖于设备的数据点集来填充。 由于根据彩色纯度函数的应用从多个获得的不同的依赖于设备的数据点集合中选择一个依赖于设备的数据点集合,所以反色变换提供了所有颜色候选中的最佳颜色估计, 相当于,并准确地恢复原始依赖于设备的色彩空间值。