会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD FOR IMPROVING THE STRUCTURAL STABILITY OF AN EXISTING BUILDING CONSTRUCTION
    • 改善现有建筑结构稳定性的方法
    • WO2015063738A3
    • 2015-11-26
    • PCT/IB2014065748
    • 2014-10-31
    • MICELI MICHELEMORELLI ENZOMARTINA MARIO
    • MICELI MICHELEMORELLI ENZOMARTINA MARIOROMEI DAVIDE
    • E04G23/02E04C3/34E04C5/06
    • E04G23/0218E04B1/92E04C3/34E04C3/36E04C5/0604E04C5/125E04G23/0211
    • Currently it is believed that with the current seismic rules, which provide even the thickening of the stirrups of the pillars and beams near the nodes, one is sufficiently protected from earthquakes in the new building constructions and above all one takes care of intervening on the existing building constructions, mainly with wrapping, ringing, stiffening systems and other outside the nodes. It is believed that this safety is a huge error for all, both new and existing, constructions of reinforced concrete (hereinafter r.c.) as it does not take into consideration in a suitable way the structure situation in the dynamic phase thereof determined by the seism. Upon starting and increasing the seismic pushes, and the corresponding oscillations of the building construction, the neutral axis starts entering the section and, when there is the tilting on the right of the construction, the left side of the section, with respect to the neutral axis, is tensioned whereas the right one is compressed. In the subsequent tilting on the left of the building construction the situation is reversed and the right portion of the section is tensioned whereas the left one is compressed. Upon still increasing the horizontal seismic pushes the neutral axis moves more and more towards the edges of the section until going out of them, by causing larger and larger slits on the tensioned portion and higher and higher compressions on the compressed portion. This because in those subsequent oscillation moments the gravity force, and therefore the weight of the pillar section, do not disappear but continue to act. For example, if one consider the instants, the second fractions, wherein the neutral axis, in a section of a pillar with side of cm. 30 with load of 75,000 (75 thousand) Kg., it lies progressively at 2.5 cm. - 0.5 cm. - 1 mm. from the edge, equal to 75 - 15 - 3 cm2., respectively, of compressed concrete (cnr), there is a compression on the cnr respectively of 1,000 Kg/cmq. - 5,000 Kg/cmq. - 25,000 Kg/cmq.; these compressions are not sustainable whatever system is adopted for increasing the resistance. The section is destroyed starting from the outside towards the inside, that is from the edges towards the centre, which is the most resistant one due to the geometrical-physical aspect itself of the section. Then, it is necessary to invert the current tendency of the art and to reinforce even the section centre. The subsequent reinforcements, from the periphery towards the centre, reduce considerably, among other things, the oscillations (by 30-40%) and consequently the damages even related to the plants, by allowing to continue to benefit from home-property. Currently only the vertical irons are put near the edges so that the irons, on the opposite sides, have the greater distance (the arm) and then they can be exploited in the whole tensile strength thereof. But upon doing that only a contrast, stopping structure is arranged, which is considered stronger than the disruptive capability of the earthquake. Therefore, there is no the adaptation which the living organisms have, for example the trees, which apart from the more external rings have even the innermost ones which, during the wing push, cooperate and contribute to reduce the disruptive action of the most external rings and when these gradually cede they take over with all resistance capability thereof. With the addition of the central reinforcements the structural collapse is further prevented, the duration of the r.c. is lengthened (analogously to the regeneration of the outer portions in the living organisms) and there is a protection from magnetic fields. The present invention applies, with different methods, both to the existing structures in r.c. and to the new building constructions.
    • 目前认为,由于目前的地震规则甚至能够使节点附近的支柱和梁的箍筋加厚,所以在新的建筑结构中可以充分保护地震,首先要考虑现有的 建筑结构,主要包括环绕,振铃,加固系统等节点外。 相信这种安全是新的和现有的钢筋混凝土结构的一个巨大的错误(以下称为r.c.),因为它没有以适当的方式考虑到由地震决定的动态相的结构状况。 在启动和增加地震推动以及建筑结构的相应振荡时,中立轴线开始进入该区段,并且当施工右侧有倾斜时,该区段的左侧相对于中立点 轴被张紧,而右侧被压缩。 在随后在建筑物左侧的倾斜中,情况相反,部分的右侧部分被张紧,而左侧的部分被压缩。 在仍然增加水平地震推力的情况下,中性轴线朝着截面的边缘越来越多地移动,直到它们离开它们,通过在张紧部分上引起更大和更大的狭缝,以及压缩部分上的更高和更高的压缩。 这是因为在随后的振荡时刻,重力和因此的支柱部分的重量不消失,而是继续作用。 例如,如果考虑时刻,则在具有cm的侧面的柱的一部分中的中性轴的第二部分。 30,负荷75,000(75000)Kg,逐渐在2.5厘米。 - 0.5厘米。 - 1毫米。 从压缩混凝土(cnr)的边缘等于75 - 15 - 3 cm 2,分别在1000 kg / cmq的压力下。 - 5,000 Kg / cmq。 - 25,000公斤/厘米; 这些压缩是不可持续的,无论采用什么系统来增加阻力。 该部分从外部朝向内部开始销毁,即从边缘朝向中心,这是由于该部分的几何物理方面本身而言是最强的部分。 那么,有必要颠倒现在的艺术潮流,甚至加强中心。 随后的从外围到中心的增援,除其他外,大幅度减少了振荡(30-40%),因此甚至与植物相关的损害,允许继续从家庭财产中受益。 目前只有垂直的铁杆放在靠近边缘处,使得铁杆在相对的两侧具有较大的距离(臂),然后可以在整个拉伸强度下利用。 但是在这样做只是一个对比,安排了停止的结构,这被认为比地震的破坏能力更强。 因此,生物体不具有适应性,例如树木,除了更多的外环之外,甚至是最内层的,在翼推的过程中,它们配合并有助于减少大多数外环的破坏作用 当这些逐渐消失时,他们接管所有的电阻能力。 随着中央增援部队的加入,进一步阻止了结构崩溃,直升机的持续时间。 延长(类似于活生物体中的外部部分的再生),并且具有防止磁场的保护。 本发明以不同的方式应用于现有的直流结构中。 和新的建筑结构。
    • 2. 发明申请
    • CENTRAL REINFORCEMENTS IN THE PILLARS AND BEAMS OF NEW AND EXISTING BUILDING CONSTRUCTIONS OF REINFORCED CONCRETE, VARY WITH THEIR POSITION IN THE BODY OF THE BUILDING CONSTRUCTION, IN PLAN AND HEIGHT, SO WITH THE CORRESPONDING STRESS, TO INCREASE THE RESISTANCE DURING THE SEISMIC SHOCK AND TO PREVENT THE STRUCTURAL COLLAPSE, WITH EXTENDING THE PERIOD OF THE CONCRETE AND PROTECTION FROM MAGNETIC FIELDS
    • 钢筋混凝土中的中央钢筋混凝土结构和现有建筑结构的变化与建筑施工,计划和高度的相关位置不同,具有相应的应力,可以提高地震震动期间的电阻 防止结构性破坏,延长了混凝土的周期和从磁场的保护
    • WO2015063738A2
    • 2015-05-07
    • PCT/IB2014/065748
    • 2014-10-31
    • MICELI, MicheleMORELLI, EnzoMARTINA, Mario
    • MICELI, MicheleMORELLI, EnzoMARTINA, MarioROMEI, Davide
    • E04G23/02
    • E04G23/0218E04B1/92E04C3/34E04C3/36E04C5/0604E04C5/125E04G23/0211
    • Currently it is believed that with the current seismic rules, which provide even the thickening of the stirrups of the pillars and beams near the nodes, one is sufficiently protected from earthquakes in the new building constructions and above all one takes care of intervening on the existing building constructions, mainly with wrapping, ringing, stiffening systems and other outside the nodes. It is believed that this safety is a huge error for all, both new and existing, constructions of reinforced concrete (hereinafter r.c.) as it does not take into consideration in a suitable way the structure situation in the dynamic phase thereof determined by the seism. Upon starting and increasing the seismic pushes, and the corresponding oscillations of the building construction, the neutral axis starts entering the section and, when there is the tilting on the right of the construction, the left side of the section, with respect to the neutral axis, is tensioned whereas the right one is compressed. In the subsequent tilting on the left of the building construction the situation is reversed and the right portion of the section is tensioned whereas the left one is compressed. Upon still increasing the horizontal seismic pushes the neutral axis moves more and more towards the edges of the section until going out of them, by causing larger and larger slits on the tensioned portion and higher and higher compressions on the compressed portion. This because in those subsequent oscillation moments the gravity force, and therefore the weight of the pillar section, do not disappear but continue to act. For example, if one consider the instants, the second fractions, wherein the neutral axis, in a section of a pillar with side of cm. 30 with load of 75,000 (75 thousand) Kg., it lies progressively at 2.5 cm. - 0.5 cm. - 1 mm. from the edge, equal to 75 - 15 - 3 cm 2 ., respectively, of compressed concrete (cnr), there is a compression on the cnr respectively of 1,000 Kg/cmq. - 5,000 Kg/cmq. - 25,000 Kg/cmq.; these compressions are not sustainable whatever system is adopted for increasing the resistance. The section is destroyed starting from the outside towards the inside, that is from the edges towards the centre, which is the most resistant one due to the geometrical-physical aspect itself of the section. Then, it is necessary to invert the current tendency of the art and to reinforce even the section centre. The subsequent reinforcements, from the periphery towards the centre, reduce considerably, among other things, the oscillations (by 30-40%) and consequently the damages even related to the plants, by allowing to continue to benefit from home-property. Currently only the vertical irons are put near the edges so that the irons, on the opposite sides, have the greater distance (the arm) and then they can be exploited in the whole tensile strength thereof. But upon doing that only a contrast, stopping structure is arranged, which is considered stronger than the disruptive capability of the earthquake. Therefore, there is no the adaptation which the living organisms have, for example the trees, which apart from the more external rings have even the innermost ones which, during the wing push, cooperate and contribute to reduce the disruptive action of the most external rings and when these gradually cede they take over with all resistance capability thereof. With the addition of the central reinforcements the structural collapse is further prevented, the duration of the r.c. is lengthened (analogously to the regeneration of the outer portions in the living organisms) and there is a protection from magnetic fields. The present invention applies, with different methods, both to the existing structures in r.c. and to the new building constructions.
    • 目前认为,由于目前的地震规则甚至能够使节点附近的支柱和梁的箍筋加厚,所以在新的建筑结构中可以充分保护地震,首先要考虑现有的 建筑结构,主要包括环绕,振铃,加强系统等节点外。 相信这个安全是对现有钢筋混凝土结构(以下简称r.c.)的所有建筑都是一个巨大的错误,因为没有以合适的方式考虑到地震确定的动态阶段的结构状况。 在启动和增加地震推动以及建筑结构的相应振荡时,中立轴线开始进入该区段,当建筑物右侧倾斜时,该区段的左侧相对于中立点 轴被张紧,而右侧被压缩。 在随后在建筑物左侧的倾斜中,情况相反,部分的右侧部分被张紧,而左侧的部分被压缩。 在仍然增加水平地震推力的情况下,中性轴线越来越朝向截面的边缘移动,直到其出来,通过在张紧部分上引起更大和更大的狭缝以及在压缩部分上的更高和更高的压缩。 这是因为在随后的振荡时刻,重力和因此的支柱部分的重量不会消失,而是继续作用。 例如,如果考虑时刻,则在具有cm的侧面的柱的一部分中的第二部分(其中中性轴线)。 30,负荷75,000(75000)Kg,逐渐在2.5厘米。 - 0.5厘米。 - 1毫米。 从压缩混凝土(cnr)的边缘等于75 - 15 - 3 cm2,cnr上的压缩率分别为1000 kg / cmq。 - 5,000 Kg / cmq。 - 25,000公斤/厘米; 这些压缩是不可持续的,无论采用什么系统来增加阻力。 该部分从外部朝内部销毁,即从边缘朝向中心,这是由于该部分的几何物理方面本身而言是最具抵抗力的部分。 那么,有必要颠倒现在的艺术潮流,甚至加强中心。 从外围到中心的后续增援除其他外,大幅度减少(30-40%),因此甚至与植物相关的损害,允许继续受益于家庭财产。 目前只有垂直的铁杆放在靠近边缘处,使得铁杆在相对的两侧具有较大的距离(臂),然后可以在整个拉伸强度下利用它们。 但这样做只是一个对比,安排了停机结构,这被认为比地震的破坏能力更强。 因此,生物体不具有适应性,例如树木,除了更多的外环之外,甚至是最内层的,在翼推的过程中,它们配合并有助于减少大多数外环的破坏作用 当这些逐渐消失时,他们接管所有的电阻能力。 随着中央增援部队的加入,进一步阻止了结构性崩溃,直升机的持续时间。 延长(类似于活生物体中的外部部分的再生),并且具有防止磁场的保护。 本发明以不同的方式应用于现有的直流结构中。 和新的建筑结构。