会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • SYNCHRONOUS SUPERCONDUCTIVE ROTARY MACHINE HAVING A CONSECUTIVE POLE ARRANGEMENT
    • 具有连续极点布置的同步超导旋转机器
    • WO2017092768A1
    • 2017-06-08
    • PCT/DK2016/050406
    • 2016-12-01
    • ENVISION ENERGY (DENMARK) APSECO 5 GMBH
    • BÜHRER, CarstenKELLERS, JürgenWIEZORECK, Jan
    • H02K55/04F03D80/80
    • F03D9/25H02K1/02H02K7/1838H02K9/19H02K19/16H02K55/04Y02E10/725Y02E40/625
    • The invention relates to a synchronously excited rotary machine with a superconductive rotor comprising a plurality of projecting first pole units of a magnetic material and a plurality of second pole units having superconductive coils wrapped around a core element of a magnetic material. Each second pole unit is positioned between two adjacent first pole units. The second pole units are spaced apart from aback iron and the first pole units via a plurality of thermally insulating support elements, wherein this spacing is evacuated so that it acts as magnetic air gap. An enclosed housing is provided on the back iron in which the first and second pole units are arranged, where- in the superconductive coils of the second pole units are in fluid communication with a cooling system. The first pole units and back iron are operated at an ambient temperature while the second pole units are operated at a cryogenic operating temperature.
    • 具有超导转子的同步激励旋转机器技术领域本发明涉及一种具有超导转子的同步激励旋转机器,该超导转子包括多个磁性材料的突出第一磁极单元和多个具有超导线圈的多个第二磁极单元, 磁性材料。 每个第二极单元位于两个相邻的第一极单元之间。 第二杆单元经由多个绝热支撑元件与背电极和第一杆单元间隔开,其中该间隔被抽空以使其充当磁气隙。 封闭的壳体设置在背铁上,第一极单元和第二极单元布置在所述背铁中,其中第二极单元的超导线圈与冷却系统流体连通。 第一极单元和背铁在环境温度下运行,而第二极单元在低温工作温度下运行。
    • 7. 发明申请
    • WIND TURBINE COMPRISING A YAW BEARING SYSTEM
    • 包含YAW轴承系统的风力涡轮机
    • WO2017162250A1
    • 2017-09-28
    • PCT/DK2017/050080
    • 2017-03-21
    • ENVISION ENERGY (DENMARK) APS
    • SØRENSEN, Carsten Bendix
    • F03D80/70
    • The invention relates to a wind turbine comprising a plurality of individual yaw bearing units and a method of replacing a pad of such a yaw bearing unit. The yaw bearing unit comprises a calliper structure divided into an upper portion and a lower portion, wherein the lower portion can be dismounted without also dismounting the upper portion. An upper pad is provided between a flange providing support for a nacelle and a mainframe of the nacelle. A radial pad is arranged on a radial surface of the upper portion and contacts a stop element located at either ends of the upper portion. An adjustable lower pad is arranged in a through hole in the lower portion and can be replaced via a lower opening in the lower portion. The radial pad can be replaced in a sideward direction by removing one of the stop elements or replacing it in an axial direction by removing the lower portion.
    • 本发明涉及包括多个独立偏航轴承单元的风力涡轮机以及更换这种偏航轴承单元的垫的方法。 偏航轴承单元包括分成上部分和下部分的卡钳结构,其中下部分可以在不拆卸上部分的情况下拆卸。 在提供用于机舱的支撑的凸缘与机舱的主框架之间设置上垫。 径向垫布置在上部的径向表面上并且接触位于上部的任一端处的止动元件。 可调节的下垫设置在下部的通孔中,并且可以通过下部的下开口进行更换。 通过移除其中一个止动元件或通过移除下部来沿轴向方向更换径向垫片,可以在侧向更换径向垫片。
    • 8. 发明申请
    • WIND TURBINE COMPRISING A MOMENT BEARING
    • 包含一个矩形轴承的风力涡轮机
    • WO2017144058A1
    • 2017-08-31
    • PCT/DK2017/050015
    • 2017-01-24
    • ENVISION ENERGY (DENMARK) APS
    • CHRISTENSEN, Claus KurtREBSDORF, Anders Varming
    • F03D80/70F16C19/38F16C33/60
    • F03D80/70F16C19/386F16C33/585F16C33/60F16C33/6614F16C33/6651F16C33/7889F16C2360/31Y02E10/722
    • The invention relates to a wind turbine comprising a rotor with a hub, a nacelle with a mainframe, and a moment bearing arranged between the hub and mainframe. The moment bearing comprises an inner ring and an outer ring between which at least one row of rotatable bearing elements is arranged. The individual bearing elements are substantially held in place by a cage located between the inner and outer rings. The outer ring further comprises a first and a second shoulder for transferring axial loads in both directions from the bearing elements to the outer ring. The moment bearing further comprises at least a first seal element configured to close off the chamber de- fined by the inner and outer rings, wherein said first seal element contacts a contact surface on the outer ring. This provides an improved heat transfer where most of the generated heat is transferred to the mainframe.
    • 本发明涉及一种风力涡轮机,其包括具有轮毂的转子,具有主框架的机舱以及布置在轮毂和主框架之间的力矩轴承。 力矩轴承包括内圈和外圈,至少一排可旋转的轴承元件布置在内圈和外圈之间。 各轴承元件基本上通过位于内外圈之间的保持架保持就位。 外环进一步包括第一和第二肩部,用于从轴承元件向外环在两个方向上传递轴向载荷。 所述力矩轴承还包括至少第一密封元件,所述第一密封元件构造成封闭由内环和外环限定的腔室,其中所述第一密封元件接触外环上的接触表面。 这提供了改进的热传递,其中大部分产生的热量被传递到主机。
    • 9. 发明申请
    • CABLE TWISTING SYSTEM WITH ELASTIC DEFORMABLE FIXTURE
    • 具有弹性变形的电缆电缆系统
    • WO2016206690A1
    • 2016-12-29
    • PCT/DK2016/050185
    • 2016-06-15
    • ENVISION ENERGY (DENMARK) APS
    • MOESTRUP, Henning
    • F03D80/80
    • F03D80/85Y02E10/726
    • The present invention relates to a wind turbine (1) comprising a nacelle (3), a wind turbine tower (2) and a cable twisting system (6) arranged inside the wind turbine tower. Cables (16) extending into the wind turbine tower are fixed to a plurality of spacer elements (7) of the cable twisting system. A lowermost spacer element (7b) is connected to the inner sidewall (27) of the wind turbine tower by first fixtures (9) while one or more guiding elements (13) arranged relative to the cable twisting system are connected to this inner surface by second fixtures (14). The first and second fixtures each comprise an elastic deformable element (17) configured to generate a counteracting force that dampens the relative movement of the spacer elements. An uppermost spacer element (7a) is connected to the nacelle by another guiding element (13a) so that it follows the yaw movement of the nacelle.
    • 本发明涉及一种风力涡轮机(1),其包括布置在风力涡轮机塔架内部的机舱(3),风力涡轮机塔架(2)和电缆扭转系统(6)。 延伸到风力涡轮机塔架中的电缆(16)固定到电缆扭转系统的多个间隔元件(7)。 最下面的间隔元件(7b)通过第一固定装置(9)连接到风力涡轮机塔架的内侧壁(27),而相对于电缆扭转系统布置的一个或多个引导元件(13)通过 第二装置(14)。 第一和第二固定装置各自包括弹性变形元件(17),其构造成产生抵消间隔件元件的相对运动的抵抗力。 最上面的间隔元件(7a)通过另一个引导元件(13a)连接到机舱,使其跟随机舱的偏转运动。
    • 10. 发明申请
    • METHOD OF CORRECTING ROTOR IMBALANCE AND WIND TURBINE THEREOF
    • 校正转子不平衡和风力涡轮机的方法
    • WO2016169964A1
    • 2016-10-27
    • PCT/EP2016/058725
    • 2016-04-20
    • ENVISION ENERGY (DENMARK) APS
    • PEDERSEN, Keld Stefan
    • F03D7/02F03D1/00
    • F03D13/35F03D7/0224F03D7/024F03D7/0296Y02E10/723
    • The present invention relates to a method of correcting rotor imbalance and a wind turbine thereof. The correction method comprises measuring the vibrations within at least one time window and determining an imbalance factor and an imbalance phase. The values of the parameters in the equation for calculating the correction action are then updated based on the imbalance factor and an imbalance phase. A correction angle for each of the wind turbine blades is calculated using these adjusted parameters. The correction angle is used to aerodynamically balance the rotor, and a model may be used to determine the initial values of the parameters. Another imbalance factor and imbalance phase is determined based on another set of measurements. This imbalance factor is then used to calculate a mass moment for correcting the mass imbalance in the wind turbine blades. The weight and location of a balancing mass is finally calculated based on this mass moment and installed in the respective wind turbine blades.
    • 本发明涉及一种校正转子不平衡的方法及其风力涡轮机。 校正方法包括测量至少一个时间窗内的振动并确定不平衡因子和不平衡相位。 然后基于不平衡因子和不平衡相位来更新用于计算校正动作的等式中的参数的值。 使用这些调整的参数来计算每个风力涡轮机叶片的校正角度。 校正角用于空气动力学平衡转子,并且可以使用模型来确定参数的初始值。 另一个不平衡因子和不平衡相位是基于另一组测量来确定的。 然后使用该不平衡因子来计算用于校正风力涡轮机叶片中的质量不平衡的质量力矩。 平衡块的重量和位置最终基于该质量矩计算并安装在相应的风力涡轮机叶片中。