会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • ORIENTED PHOTOCATALYTIC SEMICONDUCTOR SURFACES
    • 面向光电子半导体表面
    • WO2014138409A1
    • 2014-09-12
    • PCT/US2014/021232
    • 2014-03-06
    • SUNPOWER TECHNOLOGIES LLC
    • LANDRY, DanielJENNINGS, Travis
    • C30B29/10
    • B01J35/004B01J27/04B01J27/043B01J27/045B01J27/0573B01J27/0576B01J35/0013B01J35/0033B01J35/006C01B3/042C01B3/045C01B13/0207C10L3/08Y02E60/364
    • The present disclosure relates to oriented photocatalytic semiconductor surfaces which may include photocatalytic capped colloidal nanocrystals (PCCNs) positioned all in the same orientation. The photoactive material may be employed in a plurality of photocatalytic energy conversion applications such as the photocatalytic reduction of carbon dioxide and water splitting, among others. The disclosed oriented PCCNs, within the oriented photoactive material, may also exhibit different shapes and sizes, and higher efficiency in a light harvesting process. Having all the PCCNs oriented at the same angle and dipole moment may allow the light to interact with the dipole at an increased efficiency, to predict the polarity of the light or a more efficient interaction with the nanocrystals substrate, and therefore, increasing the harvesting efficiency by controlling different parts of the light spectrum in the same system.
    • 本公开涉及定向光催化半导体表面,其可以包括全部位于相同取向的光催化封端的胶体纳米晶体(PCCN)。 光活性材料可以用于多种光催化能转换应用,例如二氧化碳的光催化还原和水分解等。 所公开的定向光活性材料中的定向PCCN也可以呈现不同的形状和尺寸,并且在光采集过程中效率更高。 使所有PCCN以相同的角度和偶极矩定向可以允许光以更高的效率与偶极相互作用,以预测光的极性或与纳米晶体衬底更有效的相互作用,因此提高收获效率 通过控制同一系统中光谱的不同部分。
    • 3. 发明申请
    • PHOTOCATALYST FOR THE PRODUCTION OF HYDROGEN
    • 用于生产氢的光催化剂
    • WO2014099855A1
    • 2014-06-26
    • PCT/US2013/075567
    • 2013-12-17
    • SUNPOWER TECHNOLOGIES LLC
    • LANDRY, Daniel
    • H01L21/02
    • B01J27/0573B01J21/063B01J21/185B01J23/06B01J23/14B01J23/36B01J23/66B01J27/04B01J27/043B01J27/0576B01J35/0013B01J35/004B01J37/031B82Y30/00B82Y40/00
    • A method and composition for making photocatalytic capped colloidal nanocrystals include semiconductor nanocrystals and inorganic capping agents as photocatalysts. The photocatalytic capped colloidal nanocrystals may be deposited on a substrate and treated to form a photoactive material that may be used in a plurality of photocatalytic energy conversion applications such as water splitting. By combining different semiconductor materials for photocatalytic capped colloidal nanocrystals employed and by changing the semiconductor nanocrystals shapes and sizes, band gaps can be tuned to expand the range of wavelengths of sunlight usable by the photoactive material. The disclosed photocatalytic capped colloidal nanocrystals within the photoactive material may also exhibit a higher efficiency of solar energy conversion process derived from a higher surface area of the semiconductor nanocrystals within photocatalytic capped colloidal nanocrystals available for the absorption of sunlight and enhancement of charge carrier dynamics.
    • 制备光催化封端的胶体纳米晶体的方法和组合物包括半导体纳米晶体和无机封端剂作为光催化剂。 光催化封端的胶态纳米晶体可以沉积在基底上并被处理以形成可用于多个光催化能量转换应用如水分解的光活性材料。 通过组合不同的半导体材料用于所用的光催化封端的胶体纳米晶体,并且通过改变半导体纳米晶体的形状和尺寸,可以调整带隙以扩大光活性材料可用的阳光波长范围。 所公开的光活性材料内的光催化封端的胶体纳米晶体还可以表现出更高的太阳能转化过程的效率,其来自可用于吸收阳光的光催化封端的胶体纳米晶体中的半导体纳米晶体的较高表面积和增强载流子动力学。
    • 4. 发明申请
    • SYSTEM FOR HARVESTING LIGHT FOR CARBON DIOXIDE
    • 二氧化碳收集系统
    • WO2014164388A1
    • 2014-10-09
    • PCT/US2014/022241
    • 2014-03-10
    • SUNPOWER TECHNOLOGIES LLC
    • LANDRY, DanielJENNINGS, Travis
    • C25B1/02
    • B01J19/127B01J2219/0883B01J2219/0892C07C1/12C10L3/08C10L2290/36C10L2290/548C07C9/04
    • A system and method for harvesting oriented light for reducing carbon dioxide to produce fuels, such as methane, are disclosed. The present disclosure also relates to oriented photocatalytic semiconductor surfaces that may include oriented photocatalytic capped colloidal nanocrystals (PCCN) which may form oriented photoactive materials. The disclosed photocatalytic system for harvesting oriented light may include a polarization system that employs reflective or polarizing surfaces, such as mirror surfaces for collecting solar energy, and orient the light rays for maximum absorption and energy conversion on oriented photoactive material. The photocatalytic system may also include elements necessary to collect and transfer methane, for subsequent transformation into electrical energy.
    • 公开了用于收集用于还原二氧化碳以产生燃料(例如甲烷)的取向光的系统和方法。 本公开还涉及定向光催化半导体表面,其可以包括定向光催化封端胶态纳米晶体(PCCN),其可以形成取向的光敏材料。 所公开的用于收集定向光的光催化体系可以包括采用反射或偏振表面的偏振系统,例如用于收集太阳能的镜面,并且定向光线以获得取向光敏材料的最大吸收和能量转换。 光催化体系还可以包括收集和转移甲烷所需的元素,用于随后的转化成电能。
    • 5. 发明申请
    • SEMICONDUCTOR PHOTOCATALYSTS EMPLOYING HIGH SURFACE AREA SUBSTRATE
    • 半导体光子晶体使用高表面积基板
    • WO2014150634A1
    • 2014-09-25
    • PCT/US2014/023845
    • 2014-03-12
    • SUNPOWER TECHNOLOGIES LLC
    • JENNINGS, Travis
    • H01L25/00H01L31/00H02N6/00
    • H01M8/0687B01J19/127B01J27/02B01J27/0573B01J27/0576B01J35/004B01J2219/0892C01B3/042C01B13/0207C25B1/003H01M8/0656H01M8/0681Y02E60/364Y02E60/368
    • A system for energy production may include a photoactive material with photocatalytic capped colloidal nanocrystals (PCCN) and plasmonic nanoparticles over a high surface area gridded substrate for increasing light harvesting efficiency. The formation of PCCN may include a semiconductor nanocrystal synthesis and an exchange of organic capping agents with inorganic capping agents. Additionally, the PCCN may be deposited between the plasmonic nanoparticles, and may act as photocatalysts for redox reactions. The photoactive material may be used in a plurality of photocatalytic energy conversion applications such as water splitting or C02 reduction. Higher light harvesting and energy conversion efficiency may be achieved by combining the plasmonic nanoparticles and PCCN over the high surface area gridded substrate. The system may also include elements necessary to collect, transfer and store hydrogen and oxygen, for subsequent transformation into electrical energy.
    • 用于能量产生的系统可以包括在高表面积网格衬底上具有光催化封端的胶体纳米晶体(PCCN)和等离子体激元纳米粒子的光活性材料,以提高光捕获效率。 PCCN的形成可以包括半导体纳米晶体合成和有机封端剂与无机封端剂的交换。 此外,PCCN可以沉积在等离子体激元纳米颗粒之间,并且可以用作氧化还原反应的光催化剂。 光活性材料可用于多种光催化能转换应用,例如水分解或二氧化碳还原。 通过将等离子体激元纳米粒子和PCCN结合在高表面积网格化基底上,可以获得更高的光收集和能量转换效率。 该系统还可以包括收集,转移和储存氢和氧所需的元素,以便随后转化成电能。
    • 6. 发明申请
    • PHOTOCATALYST FOR THE REDUCTION OF CARBON DIOXIDE
    • 用于减少二氧化碳的光催化剂
    • WO2014120722A1
    • 2014-08-07
    • PCT/US2014/013519
    • 2014-01-29
    • SUNPOWER TECHNOLOGIES LLC
    • LANDRY, Daniel
    • H01L33/44
    • B01J27/04B01J35/004B82Y30/00
    • The present disclosure relates to a method and composition for forming photocatalytic capped colloidal nanocrystals which may include semiconductor nanocrystals and inorganic capping agents as photocatalysts. Photocatalytic capped colloidal nanocrystals may be deposited on a substrate and treated to form a photoactive material which may be employed in a plurality of photocatalytic energy conversion applications such as the photocatalytic reduction of carbon dioxide. Different semiconductor materials, shapes and sizes may be combined when forming photocatalytic capped colloidal nanocrystals, allowing band gaps to be tuned and expand the range of wavelengths of sunlight usable by the photoactive material. The disclosed photocatalytic capped colloidal nanocrystals, within the photoactive material, may also exhibit a higher efficiency of solar energy conversion process, derived from a higher surface area of the semiconductor nanocrystals within photocatalytic capped colloidal nanocrystals available for the absorption of sunlight and enhancement of charge carrier dynamics.
    • 本公开涉及一种用于形成光催化封端的胶体纳米晶体的方法和组合物,其可以包括半导体纳米晶体和无机封端剂作为光催化剂。 光催化封端的胶态纳米晶体可以沉积在基底上并进行处理以形成可用于多种光催化能转换应用如光催化还原二氧化碳的光活性材料。 当形成光催化封端的胶体纳米晶体时,可以组合不同的半导体材料,形状和尺寸,允许调整带隙并扩大光活性材料可用的阳光波长范围。 所公开的光催化封端的胶体纳米晶体在光活性材料中也可以表现出更高的太阳能转换过程的效率,其衍生自可用于吸收阳光的光催化封端的胶体纳米晶体中的半导体纳米晶体的较高表面积和增强载流子 动力学。
    • 7. 发明申请
    • PHOTOCATALYTIC CO2 REDUCTION SYSTEM
    • 光化学二氧化碳还原系统
    • WO2014186432A1
    • 2014-11-20
    • PCT/US2014/037949
    • 2014-05-14
    • SUNPOWER TECHNOLOGIES LLC
    • JENNINGS, TravisLANDRY, Daniel
    • B01J23/89
    • B01J27/04B01J19/127B01J23/38B01J23/52B01J27/0573B01J27/0576B01J35/0013B01J35/004B01J2219/0875B01J2219/0892
    • A system employing sunlight energy for reducing CO2 into methane and water is disclosed. The system may include the use of a photoactive material including plasmonic nanoparticles and photocatalytic capped colloidal nanocrystals (PCCN). A method for producing the PCCN may include a semiconductor nanocrystal synthesis and an exchange of organic capping agents with inorganic capping agents. Additionally, the PCCN may be deposited between the plasmonic nanoparticles, and may act as photocatalysts for redox reactions. The CO2 reduction system may use inorganic capping agents that cap the surface of semiconductor nanocrystals to form PCCN, which may be deposited on a substrate and treated to form a photoactive material. The photoactive material may be employed in the system to harvest sunlight and produce energy necessary for carbon dioxide reduction. The system may also include elements necessary to collect and transfer methane, for subsequent transformation into electrical energy.
    • 公开了一种采用太阳能将CO 2还原成甲烷和水的系统。 该系统可以包括使用光活性材料,包括等离子体激元纳米颗粒和光催化封端的胶体纳米晶体(PCCN)。 制备PCCN的方法可以包括半导体纳米晶体合成和有机封端剂与无机封端剂的交换。 此外,PCCN可以沉积在等离子体激元纳米颗粒之间,并且可以用作氧化还原反应的光催化剂。 二氧化碳还原系统可以使用覆盖半导体纳米晶体的表面以形成PCCN的无机封端剂,其可以沉积在基底上并被处理以形成光活性材料。 光活性材料可用于系统中以收获太阳光并产生二氧化碳还原所需的能量。 该系统还可以包括收集和转移甲烷所需的元素,以便随后转化成电能。
    • 9. 发明申请
    • LIGHT EMITTING DEVICE WITH ALL-INORGANIC NANOSTRUCTURED FILMS
    • 具有全无机纳米结构膜的发光器件
    • WO2014120351A2
    • 2014-08-07
    • PCT/US2013/075554
    • 2013-12-17
    • SUNPOWER TECHNOLOGIES LLC
    • LANDRY, Daniel
    • C09K11/08C09D11/50C09D11/52H05B33/14
    • A fused film and methods for making the fused film to be employed in a light emitting device are provided. In one embodiment, the disclosure provides a method for forming a film from fused all-inorganic colloidal nanostructures, where the all-inorganic colloidal nanostructures may include inorganic semiconductor nanoparticles and functional inorganic ligands that may be fused to form an electrical network that is electroluminescent. In another embodiment, the disclosure provides a light-emitting device including the fused film that minimizes current leakage in the device and provides increased stability, longevity, and luminescent efficiency to the device.
    • 提供一种熔融薄膜以及用于制造在发光器件中使用的熔融薄膜的方法。 在一个实施方案中,本公开提供了从熔融的全无机胶体纳米结构形成膜的方法,其中全无机胶体纳米结构可以包括无机半导体纳米颗粒和可以被熔合以形成电致发光的电网的功能性无机配体。 在另一个实施例中,本公开提供了包括熔融膜的发光器件,其使器件中的电流泄漏最小化并且为器件提供增加的稳定性,寿命和发光效率。