会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明申请
    • NON-DIFFERENTIAL ELASTOMER CURVATURE SENSOR
    • 非微分弹性​​体曲率传感器
    • WO2012103073A3
    • 2012-11-01
    • PCT/US2012022338
    • 2012-01-24
    • HARVARD COLLEGEMAJIDI CARMEL SHAMIMKRAMER REBECCA KWOOD ROBERT J
    • MAJIDI CARMEL SHAMIMKRAMER REBECCA KWOOD ROBERT J
    • G01B7/28G01B7/16
    • G01B7/18G01B7/28G01B7/281
    • A hyperelastic, soft microfluidic film measures bending curvature using a novel non-differential mechanism. Disclosed embodiments of the elastomer-based solution allows for curvature sensing directly on a bending plane and thus eliminates limitations imposed by strain gauge factor (GF) and sensor thickness (Z). Due to soft lithography microfabrication and design methods the disclosed curvature sensors are elastically soft (modulus 0.1-1 MPa) and stretchable (100-1000% strain). In contrast to existing curvature sensors that measure differential strain, embodiments of the present invention measures curvature directly and allows for arbitrary gauge factor and film thickness. Moreover, the sensor is composed entirely of soft elastomer (PDMS or Ecoflex® and conductive liquid (eutectic gallium indium, (eGaIn)) and thus remains functional even when stretched to several times its natural length. Electrical resistance in the embedded eGaIn microchannel is measured as a function of bending curvature for a variety of sensor designs.
    • 超弹性,柔软的微流体膜使用新颖的非差分机制测量弯曲曲率。 公开的基于弹性体的解决方案的实施例允许直接在弯曲平面上进行曲率感测,并且因此消除了由应变仪因子(GF)和传感器厚度(Z)施加的限制。 由于软光刻微制造和设计方法,所公开的曲率传感器是弹性柔软的(模量0.1-1MPa)和可拉伸的(100-1000%应变)。 与测量差分应变的现有曲率传感器相反,本发明的实施例直接测量曲率并且允许任意的标准因数和膜厚度。 而且,传感器完全由软的弹性体构成的,即使拉伸至数倍于其自然长度(PDMS或的Ecoflex®和导电液体(低共熔铟镓,(EGAIN)),并且因此保持功能性的。在嵌入式微通道EGAIN电气电阻被测量 作为各种传感器设计的弯曲曲率的函数。
    • 42. 发明申请
    • DETERMINING A SURFACE PROFILE OF AN OBJECT
    • 用于确定表面轮廓的测量方法
    • WO2003073040A2
    • 2003-09-04
    • PCT/EP2003/002040
    • 2003-02-26
    • SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.
    • CROUZEN, Paulus, Carolus, Nicolaas
    • G01B7/00
    • G01N27/9086G01B7/28G01B7/281G01N27/902
    • A method of determining a surface profile of an electrically conductive object, using probe comprising a transmitter/receiver arrangement for inducing transient eddy currents in the object, for providing a signal indicative of a magnetic field property, the method comprising: a) selecting a calibration point on the surface, and a number of calibration positions of the transmitter/receiver arrangement; b) determining a set of calibration values by determining, for each of the calibration positions, a characteristic value of the signal generated in the receiver in response to transient eddy currents induced in the object by the transmitter, wherein the characteristic value relates to the amplitude of the signal; c) determining a calibration function which relates the calibration values to the relative location of calibration position and calibration point; d) selecting a set of inspection points on the surface of the object, and a set of corresponding inspection positions of the transmitter/receiver arrangement; e) determining a set of inspection values by determining, for each of the inspection positions, a characteristic value of the signal generated in the receiver in response to transient eddy currents induced in the object by the transmitter; and f) determining the surface profile by interpreting the set of inspection values, using the calibration function, wherein the relative location of inspection points and corresponding inspection positions is derived.
    • 一种确定导电物体的表面轮廓的方法,所述方法包括以下步骤:使用包括用于在所述物体中感应瞬时涡流的发射器/接收器装置的探针提供指示磁场特性的信号,所述方法包括:a)选择校准 表面上的点,以及发射器/接收器装置的多个校准位置; b)通过针对每个校准位置确定响应于由发射器在物体中感应的瞬态涡流而在接收机中产生的信号的特征值来确定一组校准值,其中该特征值与振幅 的信号; c)确定将校准值与校准位置和校准点的相对位置相关联的校准功能; d)在对象的表面上选择一组检查点,以及发送器/接收器装置的一组对应的检查位置; e)通过针对每个检查位置确定在接收器中响应于由发射器在物体中感应的瞬态涡流产生的信号的特征值来确定一组检查值; 以及f)使用所述校准功能来解释所述一组检查值来确定所述表面轮廓,其中导出检查点和对应的检查位置的相对位置。
    • 43. 发明申请
    • 3-DIMENSIONAL SHAPE SCANNER AND SHAPE SCANNING METHOD
    • 三维形状扫描仪和形状扫描方法
    • WO02021430A1
    • 2002-03-14
    • PCT/KR2001/001442
    • 2001-08-25
    • G06K9/74A61C9/00A61C13/00G01B7/28
    • G01B7/28A61C9/008A61C13/0004
    • A 3-dimensional shape scanner and shape scanning method for rapidly and accurately scanning a shape of an object e.g., an artificial tooth, which requires a precise processing. The scanner of the present invention detects the contact of a probe to the object applied with electrically conductive liquid by checking the electrical conduction state to scan the shape of the object. In the scanner, a first probe (10) is installed to be electrically connected to an exterior point of the object (90), while a second probe (12) is installed to be movable around the object (90). While a position controller (30) changes the 3-dimensional position of the second probe (12) with respect to the object (90), a contact detector (40) detects the electrical conduction state between the contact of the second probe (12) to the object (90) by checking the electrical conduction state between the first and second probes (10, 12). A recorder (50) records the spacial position of the second probe (12) when the first and second probe (10, 12) is electrically connected to each other.
    • 一种用于快速且准确地扫描需要精确加工的诸如人造牙齿的物体的形状的三维形状扫描器和形状扫描方法。 本发明的扫描仪通过检查导电状态来检测探针与施加有导电液体的物体的接触,以扫描物体的形状。 在扫描器中,安装第一探针(10)以电连接到物体(90)的外部点,而第二探针(12)被安装成围绕物体(90)移动。 当位置控制器(30)相对于物体(90)改变第二探针(3)的三维位置时,接触检测器(40)检测第二探针(12)的接触之间的导电状态, 通过检查第一和第二探针(10,12)之间的导电状态到物体(90)。 当第一和第二探针(10,12)彼此电连接时,记录器(50)记录第二探针(12)的空间位置。
    • 44. 发明申请
    • A METHOD TO MEASURE A MOVEMENT OF AN OBJECT
    • 一种测量物体运动的方法
    • WO01075456A1
    • 2001-10-11
    • PCT/SE2001/000659
    • 2001-03-26
    • B22D11/16G01B7/28G01P3/80G01P3/42G01N27/90
    • G01P3/803B22D11/16G01B7/28
    • One measures the velocity and the displacement of an object, for example casting velocity and casting length in the continuous casting of a steel string (11) in the tough environment. In the direction of movement of the object (11), along the movement or opposite the movement, one sweeps an eddy-current inducer (12) a predetermined distance over a surface of the object with the sweep overlapping the preceding sweep and compares the received signal, that defines the topography of the surface, with the signal in the preceding sweep by means of correlation analysis so as to get the displacement that has occurred between the steps. One gets also a measurement of the friction in the mould by registering variations in the oscillation superimposed to the string as a result of the oscillation of the mould.
    • 一个测量物体的速度和位移,例如铸造速度和铸造长度在钢琴串(11)的连续铸造在恶劣的环境中。 在物体(11)的移动方向上,沿运动或与运动相反的方向,扫掠涡流引导器(12)在物体的表面上与预先扫描重叠的预定距离,并将其接收 信号,其通过相关分析来定义表面的形貌,其中通过相关分析在先前扫描中的信号,以获得在步骤之间发生的位移。 通过记录由于模具的振动而叠加到弦上的摆动的变化,还可以测量模具中的摩擦。
    • 48. 发明申请
    • METHOD OF SCANNING A WORKPIECE SURFACE
    • 扫描工作表面的方法
    • WO1991011679A1
    • 1991-08-08
    • PCT/GB1991000135
    • 1991-01-30
    • RENISHAW PLCMcMURTRY, David, Roberts
    • RENISHAW PLC
    • G01B07/03
    • G01B7/28G01B7/008
    • A method of scanning the surface (S1) of a workpiece (W) using a coordinate positioning machine equipped with a touch trigger probe (20) is disclosed. The probe is driven in a circular path toward, or away from the surface (S1) dependent upon whether or not the stylus (22) of the probe (20) is displaced from its rest position. The radius of curvature of the circular path on which the probe (20) is driven is determined in accordance with an angle between lines joining the last three points on the surface (S1) measured by the machine. The radius of curvature of the circular path is reduced with increasingly acute angles. The speed of the probe is also determined in accordance with the angle between lines joining the last three points measured by the machine; typically as the product of a maximum designated speed and the scalar product between vectors defined by lines joining the previous three measured points.
    • 公开了一种使用配备有触发式探针(20)的坐标定位机扫描工件(W)的表面(S1)的方法。 取决于探头(20)的触针(22)是否从其静止位置移位,探针以朝向或远离表面(S1)的圆形路径驱动。 根据由机器测量的表面上的最后三个点(S1)之间的角度来确定探测器(20)驱动的圆形路径的曲率半径。 圆形路径的曲率半径随着锐角的减小而减小。 探头的速度也根据连接由机器测量的最后三点的线之间的角度来确定; 通常作为最大指定速度的乘积和在连接前三个测量点的线定义的向量之间的标量积。
    • 49. 发明申请
    • POSITION-DETERMINING APPARATUS
    • 位置确定装置
    • WO1988002843A1
    • 1988-04-21
    • PCT/GB1987000747
    • 1987-10-20
    • RENISHAW PLCMcMURTRY, David, Roberts
    • RENISHAW PLC
    • G01B07/03
    • G01B11/026G01B7/008G01B7/28
    • The apparatus is a co-ordinate measuring machine having a column (33) movable relative to an object (11) for determining the contour (12) thereof. A tube (15) movable relative to the column (33) has a lens (18) focussing light to a sensing point (19) intended to lie at the contour (12). When, on moving the column (33) across the contour (12), the contour (12) rises relative to the column (33) and the lens (18), the change is at first detected by an optical position sensor (23) which produces an error signal (26A) to a motor (27) causing the latter to move the tube (15) in the sense restoring the sensing point (19) to the new position of the contour (12). The movement of the tube (15) is sensed by a further position sensor (30) which outputs a signal (30Z) connected to move the column (33) in the sense of restoring its previous position relative to the tube (15). The latter signal (30Z) is shaped to produce an initially slow response in the column (33) so that the relatively greater inertia thereof is accommodated.
    • 该装置是具有可相对于物体(11)移动以便确定其轮廓(12)的柱(33)的坐标测量机。 相对于列(33)可移动的管(15)具有将光聚焦到旨在位于轮廓(12)处的感测点(19)的透镜(18)。 当在列(33)上移动横过轮廓(12)时,轮廓(12)相对于柱(33)和透镜(18)升高,首先由光学位置传感器(23)检测到变化, 其产生到马达(27)的误差信号(26A),使马达(27)在将感测点(19)恢复到轮廓(12)的新位置的方向上移动管(15)。 通过另一个位置传感器(30)感测管(15)的运动,该位置传感器(30)输出一个连续的信号(30Z),以便在恢复其相对于管(15)的先前位置的意义上移动柱(33)。 后一信号(30Z)被成形为在柱(33)中产生最初缓慢的响应,使得容纳相对更大的惯性。
    • 50. 发明申请
    • MULTI-MODE CAPACITIVE SENSOR
    • 多模式电容式传感器
    • WO2016137645A1
    • 2016-09-01
    • PCT/US2016/015165
    • 2016-01-27
    • SYNAPTICS INCORPORATED
    • SHEN, GuozhongERDOGAN, Ozan ErsanTAPARIA, AjayTHOMPSON, Erik Jonathon
    • G06K9/00G06F3/044
    • G06K9/0002G01B7/28
    • A method and device for providing a multi-modal capacitive sensor, including a plurality of sensor electrodes, in an electronic device is provided. In a first mode, the capacitive sensor is configured to capture an image of a biometric object. In a second mode, the capacitive sensor is configured to provide presence detection functionality. In the second mode, the capacitive sensor includes at least one first electrode and at least one second electrode selected from a plurality of sensor electrodes. When operating in the second mode, the at least one first electrode is configured to receive a transmit signal, and the at least one second electrode is configured to receive a resulting signal capacitively coupled from the at least one first electrode. Based on the resulting signal, a processing system of the electronic device determines whether a biometric object to be imaged is present in the sensing area.
    • 提供一种用于在电子设备中提供包括多个传感器电极的多模式电容传感器的方法和装置。 在第一模式中,电容传感器被配置为捕获生物测定对象的图像。 在第二模式中,电容传感器被配置为提供存在检测功能。 在第二模式中,电容传感器包括至少一个第一电极和至少一个选自多个传感器电极的第二电极。 当在第二模式下操作时,所述至少一个第一电极被配置为接收发射信号,并且所述至少一个第二电极被配置为接收从所述至少一个第一电极电容耦合的结果信号。 基于所得到的信号,电子设备的处理系统确定在感测区域中是否存在要成像的生物体物体。