会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 24. 发明申请
    • VERTICALLY ALIGNED CARBON NANOTUBE ARRAYS AS ELECTRODES
    • 垂直排列的碳纳米管阵列作为电极
    • WO2017011052A3
    • 2017-02-23
    • PCT/US2016029184
    • 2016-04-25
    • UNIV RICE WILLIAM M
    • TOUR JAMES MRAJI ABDUL-RAHMAN OSALVATIERRA RODRIGO V
    • H01J1/63H01J17/49H01J63/04
    • H01M10/0525H01G11/06H01G11/28H01G11/36H01G11/68H01G11/86H01M4/045H01M4/587H01M4/625H01M4/66H01M4/661H01M4/663Y02E60/13
    • Embodiments of the present disclosure pertain to electrodes that include a plurality of vertically aligned carbon nanotubes and a metal associated with the vertically aligned carbon nanotubes. The vertically aligned carbon nanotubes may be in the form of a graphene-carbon nanotube hybrid material that includes a graphene film covalently linked to the vertically aligned carbon nanotubes. The metal may become reversibly associated with the carbon nanotubes in situ during electrode operation and lack any dendrites or mossy aggregates. The metal may be in the form of a non-dendritic or non-mossy coating on surfaces of the vertically aligned carbon nanotubes. The metal may also be infiltrated within bundles of the vertically aligned carbon nanotubes. Additional embodiments pertain to energy storage devices that contain the electrodes of the present disclosure. Further embodiments pertain to methods of forming said electrodes by applying a metal to a plurality of vertically aligned carbon nanotubes.
    • 本公开的实施例涉及包括多个垂直排列的碳纳米管和与垂直排列的碳纳米管相关联的金属的电极。 垂直排列的碳纳米管可以是石墨烯 - 碳纳米管混合材料的形式,其包括与垂直排列的碳纳米管共价连接的石墨烯膜。 在电极操作过程中,金属可能与碳纳米管原位可逆地结合,并且缺乏任何树突或苔状聚集体。 金属可以在垂直排列的碳纳米管的表面上呈非树枝状或非苔藓状涂层的形式。 金属也可以渗入垂直排列的碳纳米管束内。 另外的实施例涉及包含本公开的电极的能量存储装置。 其他实施例涉及通过将金属施加到多个垂直排列的碳纳米管来形成所述电极的方法。
    • 25. 发明申请
    • SYNTHESIS OF MAGNETIC CARBON NANORIBBONS AND MAGNETIC FUNCTIONALIZED CARBON NANORIBBONS
    • 磁性纳米颗粒和磁性功能碳纳米管的合成
    • WO2013162660A3
    • 2013-12-19
    • PCT/US2013023472
    • 2013-01-28
    • UNIV RICE WILLIAM MMI LLC
    • TOUR JAMES MGENORIO BOSTJANLU WEIPRICE-HOELSCHER BRANDI KATHERINE
    • H01F1/34C01B31/02
    • H01F1/01B82Y30/00B82Y40/00C01B32/168C01B32/194C09K8/032C09K8/32C09K8/36C09K2208/10E21B21/00E21B47/12
    • Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized. Additional embodiments of the present disclosure pertain to magnetic carbon nanoribbon compositions that were formed in accordance with the methods of the present disclosure.
    • 本公开的各种实施方案涉及制备磁性碳纳米带的方法。 这些方法通常包括:(1)通过分解碳纳米材料形成碳纳米带; 和(2)将石墨烯纳米带与磁性材料,磁性材料的前体或其组合相关联。 本公开的另外的实施方案还包括将磁性材料的前体还原成磁性材料的步骤。 在各种实施方案中,缔合发生在碳纳米材料分裂之前,期间或之后。 在一些实施方案中,本公开的方法还包括(3)用官能化试剂官能化碳纳米带的步骤。 在更具体的实施方案中,官能化在碳纳米材料分裂过程中就地发生。 在另外的实施方案中,碳纳米带是边缘官能化的。 本公开的另外的实施方案涉及根据本公开的方法形成的磁性碳纳米纤维组合物。
    • 26. 发明申请
    • LASER INDUCED GRAPHENE HYBRID MATERIALS FOR ELECTRONIC DEVICES
    • 用于电子设备的激光诱导石墨混合材料
    • WO2016133571A3
    • 2016-10-13
    • PCT/US2015062832
    • 2015-11-27
    • UNIV RICE WILLIAM M
    • TOUR JAMES MLI LEIPENG ZHIWEIZHANG JIBO
    • B32B9/00B32B3/00
    • H01G11/36C01B32/184C01B32/194C01B32/20C01B2204/04C01B2204/22C01B2204/32H01M4/587H01M4/625Y02E60/13
    • In some embodiments, the present disclosure pertains to methods of producing a graphene hybrid material by exposing a graphene precursor material to a laser source to form a laser-induced graphene, where the laser-induced graphene is derived from the graphene precursor material. The methods of the present disclosure also include a step of associating a pseudocapacitive material (e.g., a conducting polymer or a metal oxide) with the laser-induced graphene to form the graphene hybrid material. The formed graphene hybrid material can become embedded with or separated from the graphene precursor material. The graphene hybrid materials can also be utilized as components of an electronic device, such as electrodes in a microsupercapacitor. Additional embodiments of the present disclosure pertain to the aforementioned graphene hybrid materials and electronic devices.
    • 在一些实施方案中,本公开内容涉及通过将石墨烯前体材料暴露于激光源以形成激光诱导的石墨烯来生产石墨烯混合材料的方法,其中所述激光诱导的石墨烯衍生自所述石墨烯前体材料。 本公开的方法还包括将假电容材料(例如,导电聚合物或金属氧化物)与激光诱导的石墨烯缔合以形成石墨烯混合材料的步骤。 形成的石墨烯混合材料可以与石墨烯前体材料嵌入或分离。 石墨烯混合材料也可以用作电子器件的组件,例如微型电容器中的电极。 本公开的另外的实施方案涉及上述石墨烯混合材料和电子装置。
    • 30. 发明申请
    • GRAPHENE QUANTUM DOT-POLYMER COMPOSITES AND METHODS OF MAKING THE SAME
    • 石墨量子聚合物复合材料及其制备方法
    • WO2016025051A2
    • 2016-02-18
    • PCT/US2015032209
    • 2015-05-22
    • UNIV RICE WILLIAM M
    • TOUR JAMES MKOVALCHUK ANTONXIANG CHANGSHENG
    • C08K3/04H01L33/26
    • C08F2/44C08J5/18C08J2329/04C08K3/042C08K2201/011C08L29/04
    • Various embodiments of the present disclosure pertain to methods of forming polymer composites that include polymers and graphene quantum dots. The methods occur by mixing a polymer component (e.g., polymers, polymer precursors and combinations thereof) with graphene quantum dots. In some embodiments, the polymers are in the form of a polymer matrix, and the graphene quantum dots are homogenously dispersed within the polymer matrix. In some embodiments, the graphene quantum dots include, without limitation, coal-derived graphene quantum dots, coke-derived graphene quantum dots, unfunctionalized graphene quantum dots, functionalized graphene quantum dots, pristine graphene quantum dots, and combinations thereof. Additional embodiments of the present disclosure pertain to polymer composites that are formed by the methods of the present disclosure. In some embodiments, the polymer composites of the present disclosure are fluorescent and optically transparent. In some embodiments, the polymer composites of the present disclosure are in the form of a film.
    • 本公开的各种实施方案涉及形成包括聚合物和石墨烯量子点的聚合物复合材料的方法。 该方法通过将聚合物组分(例如聚合物,聚合物前体及其组合)与石墨烯量子点混合而发生。 在一些实施方案中,聚合物是聚合物基质的形式,并且石墨烯量子点均匀地分散在聚合物基质内。 在一些实施方案中,石墨烯量子点包括但不限于由煤衍生的石墨烯量子点,焦炭衍生的石墨烯量子点,未官能化石墨烯量子点,官能化石墨烯量子点,原始石墨烯量子点及其组合。 本公开的另外的实施方案涉及通过本公开的方法形成的聚合物复合材料。 在一些实施方案中,本公开的聚合物复合物是荧光和光学透明的。 在一些实施方案中,本公开的聚合物复合材料为膜的形式。