会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Photonic signal frequency up and down-conversion using a photonic band gap structure
    • 使用光子带隙结构的光子信号频率上下转换
    • US20010028029A1
    • 2001-10-11
    • US09742295
    • 2000-12-22
    • Michael ScaloraMark J. BloemerMarco CentiniGiuseppe D'Aguanno
    • G02F001/37G02B006/12
    • B82Y20/00G02B6/02057G02B6/1225G02F1/3534G02F1/37G02F1/3775G02F2201/30G02F2202/32
    • A photonic band gap (PBG) device is provided for frequency up and/or down-converting first and second photonic signals incident on the device to produce a down-converted output photonic signal. When the first and second incident photonic signals have respective first and second frequencies null3 and null2, the down-converted photonic signal has a third frequency null1nullnull3nullnull2. When the first incident field has a frequency null1, the first up-converted photonic signal has a second frequency null2. The second up-converted photonic signal has a third frequency null3nullnull1nullnull2. Thus, the PBG device can be used to generate coherent near- and mid-IR signals by frequency down-converting photonic signals from readily available photonic signal sources, or red, blue, and ultraviolet signals by up-converting the same readily available photonic signal sources. The PBG device includes a layered stack having a plurality of first material layers and a plurality of second material layers. The first and second material layers are arranged such that the PBG device exhibits a photonic band gap structure exhibiting first, second and third transmission band edges respectively corresponding to the first, second, and third frequencies. An interaction of the first and second photonic signals with the arrangement of layers in the metal stack causes a mixing process to generate the both up and down-converted photonic signal at the third frequency.
    • 提供了一种光子带隙(PBG)器件,用于对入射到器件上的第一和第二光子信号进行上变频和/或下变频以产生下变频的输出光子信号。 当第一和第二入射光子信号具有相应的第一和第二频率ω3和ω2时,下转换的光子信号具有第三频率ω1 =ω3-ω2。 当第一入射场具有频率ω1时,第一上变频光子信号具有第二频率ω2。 第二次上转换的光子信号具有第三频率ω3=ω1-ω2。 因此,PBG器件可以用于通过从容易获得的光子信号源或红色,蓝色和紫外信号中的光子信号降频转换相同容易获得的光子信号而产生相干近红外信号和中红外信号 来源。 PBG装置包括具有多个第一材料层和多个第二材料层的分层堆叠。 第一和第二材料层布置成使得PBG器件呈现分别对应于第一,第二和第三频率的第一,第二和第三透射带边缘的光子带隙结构。 第一和第二光子信号与金属堆叠中的层的布置的相互作用导致混合过程以在第三频率产生上转换和下转换的光子信号。
    • 3. 发明申请
    • Method and apparatus for fiber Bragg grating production
    • 光纤布拉格光栅生产方法和装置
    • US20030007730A1
    • 2003-01-09
    • US10038099
    • 2001-10-29
    • Aculight Corporation
    • Roy M. MeadCharles I. Miyake
    • G02B006/34G02F001/37
    • G02B6/02138G02B6/02133G02F1/353G02F1/37G02F2001/3507G02F2001/354G02F2201/16
    • A wide variety of Fiber Bragg writing devices comprising solid state lasers are provided. The solid state lasers emit moderate peak-power output beams which are suitable for efficient production of fiber Bragg gratings without causing embrittlement of the optical waveguide. These solid state lasers generate output beams with wavelengths of approximately 240 nm, in order to match the primary absorption peak in the ultraviolet range for a typical optical waveguide. In some embodiments, the solid state lasers comprise Ti:sapphire lasers which are tuned to produce fundamental wavelengths which are frequency-multiplied. In other embodiments, the output beam of a Ti:sapphire laser is mixed with a harmonic beam from a pump laser. Some embodiments output the third harmonic of a fundamental beam.
    • 提供了包括固态激光器的各种各样的光纤布拉格写入装置。 固态激光器发出中等的峰值功率输出光束,其适合于有效地生产光纤布拉格光栅而不会导致光波导的脆化。 这些固态激光器产生波长为约240nm的输出光束,以便匹配典型光波导的紫外范围内的初级吸收峰。 在一些实施例中,固态激光器包括被调谐以产生倍频的基本波长的Ti:蓝宝石激光器。 在其他实施例中,Ti:蓝宝石激光器的输出光束与来自泵浦激光器的谐波束混合。 一些实施例输出基波束的三次谐波。
    • 4. 发明申请
    • Method for forming a polarization-inversed portion
    • 用于形成偏振反转部分的方法
    • US20020005980A1
    • 2002-01-17
    • US09871067
    • 2001-05-31
    • NGK Insulators, Ltd.
    • Shoichiro YamaguchiTatsuo KawaguchiTakatoshi Nehagi
    • G02F001/37
    • G02F1/3558G02F1/3775
    • A first electrode and a second electrode are provided in separation on a main surface of a substrate made of a ferroelectric single crystal. A first voltage is applied to between the first electrode and the second electrode, for example on condition that the first electrode is positive and the second electrode is negative, to generate and grow a first polarization-inversed portion toward the second electrode from the first electrode. Then, the distance between the first electrode and the second electrode is changed, and a second voltage is applied to between the first electrode and the second electrode on the same condition, to generate and grow a second polarization-inversed portion, in a different area from that of the first polarization-inversed portion, toward the second electrode from the first electrode.
    • 在由铁电单晶构成的基板的主表面上分离地设置第一电极和第二电极。 第一电压施加到第一电极和第二电极之间,例如在第一电极为正且第二电极为负的条件下,从第一电极产生并生长朝向第二电极的第一偏振反转部分 。 然后,改变第一电极和第二电极之间的距离,并且在相同的条件下将第二电压施加到第一电极和第二电极之间,以在不同的区域中产生和增长第二偏振反转部分 从第一偏振反转部分的第一偏振反射部分朝着从第一电极的第二电极。
    • 5. 发明申请
    • Nonlinear frequency mixer using quasi-phase-matching gratings having beam-modifying patterns
    • 使用具有光束修改图案的准相位匹配光栅的非线性混频器
    • US20040227986A1
    • 2004-11-18
    • US10440490
    • 2003-05-16
    • Jonathan R. KurzMartin M. Fejer
    • G02F001/37G02F001/39
    • G02F1/3775G02F2001/372
    • A method and a nonlinear frequency mixer employing the method to generate at least one output light from at least one input light with the aid of a quasi-phase-matching (QPM) grating for quasi-phase-matching the input and output light involved in a nonlinear frequency mixing operation such as three-wave mixing, four-wave mixing or other nonlinear operation mediated by a susceptibility of the nonlinear optical material. The QPM has a beam-modifying pattern with features for wave front shaping. More specifically, the features shape the wave fronts of the output light by diffraction or phase front shaping to thereby modify its propagation. This modification of propagation can be used to steer, focus, defocusing, split and/or collimate the output light. The features themselves can have various geometric shapes and sizes, even on the order of the wavelength of the output light, and they can include domains exhibiting a nonlinear optical susceptibility null, such as the second-order susceptibility null(2), domain edges, and/or spacings between such domains.
    • 一种采用该方法的方法和非线性频率混合器,用于借助于准相位匹配(QPM)光栅从至少一个输入光产生至少一个输出光,以准相相匹配参与的输入和输出光 由非线性光学材料的磁化率介导的三波混频,四波混频或其他非线性运算的非线性频率混合操作。 QPM具有波束修改图案,具有波前成形功能。 更具体地,这些特征通过衍射或相位前置成形来形成输出光的波前,从而改变其传播。 传播的这种修改可用于引导,聚焦,散焦,分离和/或校准输出光。 特征本身可以具有各种几何形状和尺寸,即使在输出光的波长的数量级上,它们也可以包括呈现非线性光学敏感度chi的畴,例如二阶磁敏度chi <(2)>域 边缘和/或这些域之间的间隔。
    • 8. 发明申请
    • Optical frequency synthesizing structure
    • 光频合成结构
    • US20020118439A1
    • 2002-08-29
    • US09991460
    • 2001-11-16
    • Lightbit Corporation
    • Robert G. Batchko
    • G02F001/35G02F001/365G02F001/37
    • G02F1/3532G02F1/3534G02F1/37
    • An Optical Frequency Shifter (Shifter) enables all-optical frequency translation to be imparted on a data-carrying Input Optical Signal (Input Signal). The Shifter includes a first difference-frequency-mixer for achieving quasi-phase-matching between a first pump channel, the Input Signal and an Intermediate Signal. A second difference-frequency-mixer is employed for achieving quasi-phase-matching between a second pump signal, the intermediate signal and a converted signal. A frequency shift discriminates the input signal from the output signal wherein the value of the frequency shift is proportional to the difference in frequencies of the first pump signal and the second pump signal. In this fashion, the value of the frequency shift in independent of the frequency of the input signal. A multiple of Input Signals may be coupled into the Shifter and may be simultaneously shifted to a multiple of respective converted signals wherein the frequency shift has a constant value and discriminates each input signal from each respective converted signal. The Shifter may employ cascaded second harmonic generation (SHG) and difference frequency generation (DFG) thereby enabling the use of pump sources having frequencies generally in the proximity of the frequencies of the Input Signal and Converted Signal. In this fashion, first and second sub-harmonic pump signals may be quasi-phase-matched by the Shifter for achieving SHG thereby generating said first and second pump signals. A plurality of Shifters may be coupled to each other, thereby enabling a plurality of frequency translations to be imparted on the Input Signals.
    • 光学移频器(Shifter)使全光频率转换能够在数据承载输入光信号(输入信号)上传递。 移位器包括用于实现第一泵通道,输入信号和中间信号之间的准相位匹配的第一差分 - 混频器。 第二差分混频器用于实现第二泵浦信号,中间信号和转换信号之间的准相位匹配。 频移对来自输出信号的输入信号进行识别,其中频移的值与第一泵浦信号和第二泵浦信号的频率差成比例。 以这种方式,频率的值与输入信号的频率无关。 输入信号的多个可以耦合到移位器中,并且可以同时移位到相应转换信号的倍数,其中频移具有恒定值并且从每个相应的转换信号中识别每个输入信号。 移相器可以采用级联二次谐波发生(SHG)和差频产生(DFG),从而使得能够使用具有通常在输入信号和转换信号的频率附近的频率的泵浦源。 以这种方式,第一和第二次谐波泵浦信号可以被移位器准相位匹配以实现SHG,从而产生所述第一和第二泵浦信号。 多个移位器可以彼此耦合,从而使得能够在输入信号上施加多个频率转换。