会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of anodizing valve metals
    • 阳极氧化阀金属的方法
    • US06267861B1
    • 2001-07-31
    • US09676672
    • 2000-10-02
    • John Tony KinardBrian John MelodyDavid Alexander Wheeler
    • John Tony KinardBrian John MelodyDavid Alexander Wheeler
    • C25D1126
    • C25D11/26C25D11/08C25D11/12
    • A method of non-thickness-limited anodizing for valve metals and alloys which are resistant to the non-thickness-limited growth of anodic oxide, such as niobium and high niobium content alloys. Non-thickness-limited anodic oxide film growth is produced on such valve metals by employing a first glycerine-based electrolyte containing about 1 to about 3 wt % water for the initial production of anodic oxide. After the substrate is anodized using the first electrolyte, it is immersed in a second glycerine-based electrolyte having less than about 0.1 wt % water. The second electrolyte may be produced by allowing water to evaporate from the first electrolyte solution until the solution contains less than about 0.1 wt. % water.
    • 一种用于阀门金属和合金的非厚度限制阳极氧化的方法,其耐受阳极氧化物如铌和高铌含量合金的非厚度限制生长。 通过使用含有约1至约3重量%的水的第一甘油基电解质用于初始生产阳极氧化物,在这种阀金属上产生非厚度限制的阳极氧化膜生长。 在使用第一电解质阳极氧化基底之后,将其浸入具有小于约0.1重量%水的第二甘油基电解质中。 第二电解质可以通过使水从第一电解质溶液蒸发直到溶液含有小于约0.1wt。 % 水。
    • 2. 发明授权
    • Differential anodization process for electrolytic capacitor anode bodies
    • 电解电容器阳极体的差示阳极氧化工艺
    • US06261434B1
    • 2001-07-17
    • US09420489
    • 1999-10-19
    • Brian John MelodyJohn Tony KinardPhilip Michael Lessner
    • Brian John MelodyJohn Tony KinardPhilip Michael Lessner
    • C25D1126
    • H01G9/0032C25D11/26
    • An electrolyte comprising water, an organic solvent selected from the group consisting of a polyethylene glycol, a polyethylene glycol monomethyl ether and mixtures thereof, and a sufficient amount of alkali metal salt of a weak organic acid, so that the electrolyte has a resistivity below about 250 ohm-cm/80° C. A method for differential anodizing porous valve metal body comprising the steps of: anodizing the bodies in a first electrolyte where the cathode surface is placed within an inch of but not in contact with the anode bodies, rinsing the bodies in deionized water, and re-anodizing the bodies in a second electrolyte, where the first electrolyte comprises water, an organic solvent selected from the group consisting of a polyethylene glycol, a polyethylene glycol monomethyl ether and mixtures thereof, and a sufficient amount of alkali metal salt of a weak organic acid so that the first electrolyte has a resistivity below about 250 ohm-cm/80° C.
    • 包含水的电解质,选自聚乙二醇,聚乙二醇单甲醚及其混合物的有机溶剂和足量的弱有机酸的碱金属盐,使得电解质的电阻率低于约 250欧姆厘米/ 80℃。一种用于差分阳极氧化多孔阀金属体的方法,包括以下步骤:将阴极表面放置在阳极体的一英寸内但不与阳极体接触的第一电解质中阳极氧化,漂洗 所述物体在去离子水中,并且在第二电解质中对所述主体进行再阳极氧化,其中所述第一电解质包含水,选自聚乙二醇,聚乙二醇单甲醚及其混合物的有机溶剂和足量的 的弱有机酸的碱金属盐,使得第一电解质的电阻率低于约250ohm-cm / 80℃。
    • 3. 发明授权
    • Methods of anodizing valve metal anodes
    • 阳极氧化阀金属阳极的方法
    • US06802951B2
    • 2004-10-12
    • US10058437
    • 2002-01-28
    • Joachim Hossick-Schott
    • Joachim Hossick-Schott
    • C25D1126
    • H01G9/0032C25D5/18C25D11/024C25D11/26
    • Methods for anodizing sintered valve metal anodes for use in wet electrolytic capacitors implemented in implantable medical devices (IMDs). The methods generally include immersing a pressed valve metal anode in an anodizing electrolyte and developing an anode-electrolyte system. Subsequently, subjecting the anode-electrolyte system to a potential that is ramped up to a target voltage in a pulsed fashion and delivering voltage potential pulses to the anode. The pulses are preferably decreased in pulse width as the potential increases. The pulse width of the applied pulses is preferably defined by means of a duty, such that the applied pulse duty cycle is substantially 100% initially and declines over the formation time as the formation voltage increases to the target potential to substantially 1.0% or less. The pulses are preferably applied for a hold time following achievement of the target formation potential, as the pulse current declines toward zero current flow.
    • 用于在可植入医疗器械(IMD)中实施的湿式电解电容器中的阳极氧化烧结阀金属阳极的方法。 所述方法通常包括将压力阀金属阳极浸入阳极氧化电解质中并显影阳极 - 电解质体系。 随后,使阳极 - 电解质系统以脉冲方式升高到目标电压的电位,并将电压电位脉冲输送到阳极。 脉冲优选随着电位增加而以脉冲宽度减小。 施加的脉冲的脉冲宽度优选地通过占空比来定义,使得施加的脉冲占空比最初为基本上为100%,并且随着地层电压增加到目标电位大致为1.0%或更小,形成时间将下降。 当脉冲电流朝向零电流流动时,脉冲优选地在实现目标形成电位之后被施加保持时间。
    • 4. 发明授权
    • Method of fabricating two-terminal nonlinear element using non-aqueous electrolyte
    • 使用非水电解质制造二端非线性元件的方法
    • US06663760B2
    • 2003-12-16
    • US09117681
    • 1998-09-15
    • Takashi InoueTakeyoshi UshikiTakumi SekiMakoto UeFumikazu MizutaniSachie Takeuchi
    • Takashi InoueTakeyoshi UshikiTakumi SekiMakoto UeFumikazu MizutaniSachie Takeuchi
    • C25D1126
    • C25D11/02G02F1/1365
    • A non-aqueous electrolyte comprises an organic solvent and a solute, and also has an electrolytic conductivity that is greater than or equal to 1 mS/cm but less than or equal to 100 mS/cm. This solute preferably includes at least one of a carboxylate and a salt of inorganic oxoacid. In addition, the non-aqueous electrolyte preferably comprises water in a proportion of 1 to 10 wt %. In an MIM nonlinear element (20), an insulated film (24) is formed by anodic oxidation using the above non-aqueous electrolyte. In addition, the insulated film comprises at least one of carbon atoms and atoms of families 3 to 7 that were originally the central atoms of the salt of inorganic oxoacid, and has a relative permittivity of 10 to 25. With this MIM nonlinear element, the capacitance is sufficiently small, the steepness of the voltage-current characteristic is sufficiently large, and also the resistance is sufficiently uniform over a wide area.
    • 非水电解质包含有机溶剂和溶质,并且还具有大于或等于1mS / cm但小于或等于100mS / cm的电解电导率。 该溶质优选包括无机含氧酸的羧酸盐和盐中的至少一种。 此外,非水电解质优选含有1〜10重量%的比例的水。 在MIM非线性元件(20)中,通过使用上述非水电解质的阳极氧化形成绝缘膜(24)。 此外,绝缘膜包含原子为无机含氧酸盐的中心原子的3至7族的碳原子和原子中的至少一个,并且具有10至25的相对介电常数。利用该MIM非线性元件, 电容足够小,电压 - 电流特性的陡峭度足够大,并且电阻在广泛的面积上也足够均匀。