会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明授权
    • Process for preparing 1,3-butadiene from n-butenes by oxidative dehydrogenation
    • US10421700B2
    • 2019-09-24
    • US15561711
    • 2016-03-23
    • BASF SELinde AG
    • Jan Pablo JoschRagavendra Prasad Balegedde RamachandranChristian WalsdorffRegina BenferAnton WellenhoferUlrike WenningHeinz BoeltHendrik ReynekeChristine Toegel
    • C07C5/48C07C7/00C07C7/08C07C7/09C07C7/11C07C11/167
    • The invention relates to a process for producing butadiene from n-butenes which comprises the steps of: A) providing a vaporous n-butenes-comprising input gas stream a1 by evaporating a liquid n-butenes-comprising stream a0; B) introducing the vaporous n-butenes-comprising input gas stream a1 and an at least oxygenous gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene to obtain a product gas stream b comprising butadiene, unconverted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases, Ca) chilling the product gas stream b by contacting with a cooling medium comprising an organic solvent in at least one chilling zone, the cooling medium being at least partially recycled into the chilling zone, Cb) compressing the chilled product gas stream b which is possibly depleted of high-boiling secondary components in at least one compression stage to obtain at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, steam, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases, D) removing noncondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes into an absorption medium to obtain a C4-hydrocarbons-laden absorption medium stream and the gas stream d2 and subsequently desorbing the C4 hydrocarbons from the laden absorption medium stream to obtain a C4 product gas stream d1, wherein at least some of the recycled cooling medium from step Ca) is brought into thermal contact with the liquid n-butenes-comprising stream a0 in one or more indirect heat exchangers and at least some of the liquid n-butenes-comprising stream a0 is evaporated by indirect heat transfer with the recycled cooling medium.
    • 9. 发明授权
    • Method for producing 1,3-butadiene by dehydrogenating n-butenes, a material flow containing butanes and 2-butenes being provided
    • US10384990B2
    • 2019-08-20
    • US15525330
    • 2015-11-09
    • BASF SELinde AG
    • Jan UngelenkPhilipp GrüneChristian WalsdorffJan Pablo JoschMichael Bender
    • C07C5/48C07C2/10C07C2/62C07C6/04C07C7/08C07C7/11C07C2/06C07C2/56C07C9/16C07C11/06C07C11/167
    • The invention relates to a process for preparing 1,3-butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising butanes, 1-butene, 2-butene and isobutene, with or without 1,3-butadiene, from a fluid catalytic cracking plant; B) removing isobutene from the input gas stream a, giving a stream b comprising butanes, 1-butene and 2-butene, with or without 1,3-butadiene; C) feeding the stream b comprising butanes, 1-butene and 2-butene and optionally an, oxygenous gas and optionally water vapor into at least one dehydrogenating zone and dehydrogenating 1-butene and 2-butene to 1,3-butadiene, giving a product gas stream c comprising 1,3-butadiene, butanes, 2-butene and water vapor, with or without oxygen, with low-boiling hydrocarbons, with high-boiling secondary components, with or without carbon oxides and with or without inert gases; D) cooling and compressing the product gas stream c, giving at least one aqueous condensate stream d1 and a gas stream d2 comprising 1,3-butadiene, butanes, 2-butene and water vapor, with or without oxygen, with low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases; Ea) removing uncondensable and low-boiling gas constituents comprising low-boiling hydrocarbons, with or without oxygen, with or without carbon oxides and with or without inert gases, as gas stream e2 from the gas stream d2 by absorbing the C4 hydrocarbons comprising 1,3-butadiene, butanes and 2-butene in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream e2, and Eb) subsequently desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 hydrocarbon stream e1; F) separating the C4 hydrocarbon stream e1 by extractive distillation with a 1,3-butadiene-selective solvent into a stream f1 comprising 1,3-butadiene and the selective solvent and a stream f2 comprising butanes and 2-butene, wherein at least 90% of the 1-butene present in stream b is converted in step C) and a product stream f2 comprising butanes and 2-butene is obtained in step F.