会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Multivariate detection of transient regions in a process control system
    • 过程控制系统中瞬态区域的多变量检测
    • US07966149B2
    • 2011-06-21
    • US11863588
    • 2007-09-28
    • Nikola SamardzijaAhmad A. Hamad
    • Nikola SamardzijaAhmad A. Hamad
    • G06F17/18G06F19/00
    • G05B23/0245G05B23/021G05B23/024Y10S715/965
    • Methods and systems to detect transient operations from abnormal operations, and to detect abnormal operations in a coker heater, include collecting on-line process data. The collected on-line process data is generated from a plurality of process variables of the process, or coker heater. A first representation of the operation of the process, or coker heater, is generated based on a first set of the collected on-line process data generated from a first set of the process variables. The first representation is adapted to be executed to generate a first result. A second representation of the operation of the process, or coker heater, is generated based on the first result and based on a second set of the collected on-line process data generated from a second set of the process variables. The second representation is adapted to be executed to generate a prediction of data generated from the second set of the process variables. The prediction is analyzed to detect an abnormal operation or to detect whether one or more abnormal operations comprises a transient operation of the process.
    • 用于检测异常操作的瞬态操作以及检测焦化加热器异常操作的方法和系统包括收集在线过程数据。 收集的在线过程数据是从过程或焦化加热器的多个过程变量产生的。 基于从第一组过程变量产生的收集的在线过程数据的第一组生成过程操作或焦化加热器的第一表示。 第一表示适于执行以产生第一结果。 基于第一结果并基于从第二组过程变量生成的收集的在线过程数据的第二组生成过程操作或焦化加热器的第二表示。 第二表示适于执行以产生从第二组过程变量生成的数据的预测。 分析预测以检测异常操作或检测一个或多个异常操作是否包括该过程的暂时操作。
    • 4. 发明授权
    • Method and system for detecting abnormal operation in a process plant
    • 用于检测过程工厂异常操作的方法和系统
    • US07912676B2
    • 2011-03-22
    • US11492467
    • 2006-07-25
    • John P. Miller
    • John P. Miller
    • G06F3/00
    • G05B23/021G05B23/0243G05B23/0297
    • A system for detecting abnormal operation of at least a portion of a process plant includes a model to model at least the portion of the process plant. The model may be configurable to include multiple regression models corresponding to multiple different operating regions of the portion of the process plant. The system may also include a deviation detector configured to determine if the actual operation of the portion of the process plant deviates significantly from the operation predicted by the model. If there is a significant deviation, this may indicate an abnormal operation.
    • 用于检测过程工厂的至少一部分的异常操作的系统包括用于对过程工厂的至少一部分进行建模的模型。 该模型可以被配置为包括对应于过程工厂部分的多个不同操作区域的多个回归模型。 系统还可以包括偏差检测器,该偏差检测器被配置为确定过程设备的部分的实际操作是否显着偏离由模型预测的操作。 如果存在显着偏差,则可能表示异常操作。
    • 5. 发明申请
    • METHOD AND APPARATUS FOR ANALYZING TIME SERIES DATA
    • 分析时间序列数据的方法和装置
    • US20110035188A1
    • 2011-02-10
    • US12837882
    • 2010-07-16
    • José Antonio Martinez-HerasAlessandro DonatiKar Lam Yeung
    • José Antonio Martinez-HerasAlessandro DonatiKar Lam Yeung
    • G06F15/00
    • G06K9/00536G05B23/021G05B23/0221G05B23/0235G06K9/6228
    • The present invention relates to a method and an apparatus for determining which one or more time series parameters of a plurality of time series parameters relating to operation of a system are correlated with a first operation state of the system. According to the invention, the method comprises providing time series data including data relating to a time series of each of the plurality of time series parameters; determining at least two first time periods, wherein the system is in the first operation state during the at least two first time periods; determining at least one second time period, wherein the system is in a second operation state during the at least one second time period; determining, for each respective time series parameter of the plurality of time series parameters, a first characteristic parameter relating to a first characteristic of the time series of the respective time series parameter for each of the at least two first time periods and the at least one second time period; and determining which one or more time series parameters of the plurality of time series parameters relating to the operation of the system are correlated with the first operation state of the system by determining, for each respective time series parameter of the plurality of time series parameters, whether or not the respective time series parameter is correlated with the first operation state of the system based on the first characteristic parameters of the respective time series parameter determined for each of the at least two first time periods and the at least one second time period.
    • 本发明涉及一种用于确定与系统的操作相关的多个时间序列参数中的哪一个或多个时间序列参数与系统的第一操作状态相关联的方法和装置。 根据本发明,该方法包括提供包括与多个时间序列参数中的每一个的时间序列有关的数据的时间序列数据; 确定至少两个第一时间段,其中所述系统在所述至少两个第一时间段期间处于所述第一操作状态; 确定至少一个第二时间段,其中所述系统在所述至少一个第二时间段期间处于第二操作状态; 对于所述多个时间序列参数的每个相应的时间序列参数,确定与所述至少两个第一时间段中的每一个的所述时间序列参数的所述时间序列的时间序列的第一特性相关的第一特征参数,以及所述至少一个 第二时期; 以及通过针对所述多个时间序列参数的每个相应的时间序列参数确定与系统的操作有关的多个时间序列参数中的哪一个或多个时间序列参数与系统的第一操作状态相关, 基于针对所述至少两个第一时间段和所述至少一个第二时间段中的每一个确定的各个时间序列参数的第一特征参数,各个时间序列参数是否与系统的第一操作状态相关。
    • 6. 发明授权
    • On-line monitoring and diagnostics of a process using multivariate statistical analysis
    • 使用多变量统计分析的过程的在线监测和诊断
    • US07853431B2
    • 2010-12-14
    • US11688737
    • 2007-03-20
    • Nikola SamardzijaJohn Philip Miller
    • Nikola SamardzijaJohn Philip Miller
    • G06F17/18G06F19/00
    • G05B23/0245G05B23/021G05B23/024Y10S715/965
    • A system and method of monitoring and diagnosing on-line multivariate process variable data in a process plant, where the multivariate process data comprises a plurality of process variables each having a plurality of observations, includes collecting on-line process data from a process control system within the process plant when the process is on-line, where the collected on-line process data comprises a plurality of observations of a plurality of process variables and where the plurality of observations of the set of collected process data comprises a first data space having a plurality of dimensions, performing a multivariate statistical analysis to represent the operation of the process based on a set of collected on-line process data comprising a measure of the operation of the process when the process is on-line within a second data space having fewer dimensions than the first data space, performing a univariate analysis to represent the operation of the process as a multivariate projection of the on-line process data by a univariate variable for each of the process variables, where the univariate variable unifies the process variables, and generating a visualization comprising a first plot of a result generated by the multivariate statistical representation of the operation of the process and a second plot of a result generated by the univariate representation of the operation of the process.
    • 一种在过程工厂中监测和诊断在线多变量过程变量数据的系统和方法,其中多变量过程数据包括多个具有多个观测值的过程变量,包括从过程控制系统收集在线过程数据 在过程在线的过程工厂内,收集的在线过程数据包括多个过程变量的多个观测值,并且其中所收集的过程数据集合的多个观测值包括具有第一数据空间的第一数据空间, 多个维度,执行多变量统计分析以基于一组收集的在线过程数据来表示所述过程的操作,所述一组收集的在线过程数据包括当所述过程在第二数据空间内在线时所述过程的操作的度量 比第一个数据空间更小的维度,执行单变量分析,以将过程的操作表示为多维度 通过单变量对每个过程变量的单变量投影在线过程数据,其中单变量统一过程变量,以及生成可视化,其包括通过多变量统计表示生成的结果的第一图 该过程和由过程操作的单变量表示产生的结果的第二个图。
    • 9. 发明申请
    • MULTIVARIATE DETECTION OF ABNORMAL CONDITIONS IN A PROCESS PLANT
    • 过程工厂中异常条件的多元检测
    • US20080082302A1
    • 2008-04-03
    • US11864529
    • 2007-09-28
    • Nikola SamardzijaAhmad Hamad
    • Nikola SamardzijaAhmad Hamad
    • G06F17/18G06F15/00G06F17/10
    • G05B23/0245G05B23/021G05B23/024Y10S715/965
    • Methods and systems to detect abnormal operations in a process of a process plant include collecting on-line process data. The collected on-line process data is generated from a plurality of dependent and independent process variables of the process, such as a coker heater. A plurality of multivariate statistical models of the operation of the process are generated using corresponding sets of the process data. Each model is a measure of the operation of the process when the process is on-line at different times, and at least one model is a measure of the operation of the process when the process is on-line and operating normally. The models are executed to generate outputs corresponding to loading value metrics of a corresponding dependent process variable, and the loading value metrics are utilized to detect abnormal operations of the process.
    • 在过程工厂的过程中检测异常操作的方法和系统包括收集在线过程数据。 收集的在线过程数据是从过程的多个依赖和独立的过程变量产生的,例如焦化加热器。 使用对应的过程数据集来生成多个过程的操作的多变量统计模型。 每个模型是过程在不同时间在线进行的过程操作的度量,当过程在线并且正常运行时,至少一个模型是对过程操作的度量。 执行模型以产生对应于相应的依赖过程变量的负载值度量的输出,并且使用负载值度量来检测过程的异常操作。
    • 10. 发明申请
    • ON-LINE MULTIVARIATE ANALYSIS IN A DISTRIBUTED PROCESS CONTROL SYSTEM
    • 分布式过程控制系统中的在线多元分析
    • US20080082194A1
    • 2008-04-03
    • US11688759
    • 2007-03-20
    • Nikola SAMARDZIJAJohn P. Miller
    • Nikola SAMARDZIJAJohn P. Miller
    • G06F19/00
    • G05B23/0245G05B23/021G05B23/024Y10S715/965
    • A method and system for monitoring a process in a process plant includes collecting data from a process control system within the process plant, where the data is representative of a normal operation of the process when the process is on-line and operating normally, performing a multivariate statistical analysis to represent the normal operation of the process based on a set of collected on-line process data comprising a measure of the normal operation of the process when the process is on-line and operating normally, and representing a real-time on-line operation of the process using monitored on-line process data comprising a measure of a real-time operation of the process when the process is on-line as an input to the representation of the normal operation of the process.
    • 用于监视过程工厂中的过程的方法和系统包括从过程工厂内的过程控制系统收集数据,其中数据表示当过程在线并且正常运行时进程的正常操作,执行 多变量统计分析,用于基于一组收集的在线过程数据来表示过程的正常操作,该集合在线过程数据包括当过程在线并且正常操作时过程的正常操作的度量,并且表示实时 使用所监视的在线过程数据的过程的线路操作,包括当过程在线作为对过程的正常操作的表示的输入时的过程的实时操作的测量。