会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • METHOD FOR ESTIMATING CRACK LENGTH PROGRESSIONS
    • 估计裂纹长度进展的方法
    • US20140358452A1
    • 2014-12-04
    • US14282081
    • 2014-05-20
    • SIEMENS AKTIENGESELLSCHAFT
    • Christian AMANNKai KADAU
    • G01M15/14G06F17/11
    • G01M15/14G01M99/00G01N2203/0064G01N2203/0066G01N2203/0212G06F17/11
    • A method for estimating the crack length ãn+1 of at least one crack (2) in a component (1): At a first instant, the length ãn of the crack is determined and the length of the crack ãn+1=ãn+Δãn is estimated at a second instant by using the integration scheme a ~ n + 1 = a ~ n + d   a ~ 1 6 + d   a ~ 2 3 + d   a ~ 3 3 + d   a ~ 4 6 ( 17 ) d   a ~ 1 = d   Nf  ( Δ   K n ) ( 18 ) d   a ~ 2 = d   Nf  ( Δ   K n + 1 2  Δ   K n 2   a ~ n  d   a ~ 1 ) ( 19 ) d   a ~ 3 = d   Nf  ( Δ   K n + 1 2  Δ   K n 2   a ~ n  d   a ~ 2 ) ( 20 ) d   a ~ 4 = d   Nf  ( Δ   K n + Δ   K n 2  a ~ n  d   a ~ 3 ) , ( 21 ) with Δãn designating the increase in the crack size, N designating the number of cycles, and K designating the stress intensity factor.
    • 用于估计部件(1)中的至少一个裂纹(2)的裂纹长度ãn+ 1的方法:在第一时刻,确定裂纹的长度ãn,并且裂纹的长度ãn+ 1 =ãn+ &Dgr;ãn通过使用积分方案估计在第二时刻a〜n + 1 = a〜n + da〜〜〜a a a a a a a a a a a a a a a (18)(18)d(n)(&Dgr;K nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n + 1 2〜〜a a a (20)(20)(20)(20)d(n)(&Dgr;K2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (21)与&Dgr;指定裂纹尺寸的增加,N指定周期数,K指定应力强度因子。
    • 9. 发明申请
    • Method and article of manufacture for estimating material failure due to crack formation and growth
    • 用于估计由于裂纹形成和生长引起的材料故障的方法和制造
    • US20020139194A1
    • 2002-10-03
    • US09945058
    • 2001-08-31
    • COOPER TIRE & RUBBER COMPANY
    • William Vernon Mars
    • G01N019/08
    • G01N3/32G01N2203/0064G01N2203/0066G01N2291/02827
    • A multiaxial strain cycle (32, 72) is received that is described by a strain tensor that is a function of time. A hyperelastic constitutive model (34, 74) corresponding to the material is received. A fatigue crack growth curve (36, 76) is obtained. A cracking energy density is calculated (50, 90) based on the constitutive model (34, 74) and the multiaxial strain cycle (32, 72). The cracking energy density is a function of material plane (44, 84) and indicates the portion of the total elastic strain energy density that is available to be released on a selected material plane (48, 88). A cracking plane is determined (54, 98) based upon the cracking energy density. A fatigue life is estimated (60, 100) based on the cracking plane and the fatigue crack growth curve (36, 76).
    • 接收由作为时间的函数的应变张量描述的多轴应变循环(32,72)。 接收对应于材料的超弹性本构模型(34,74)。 得到疲劳裂纹扩展曲线(36,76)。 基于本构模型(34,74)和多轴应变周期(32,72)计算裂纹能量密度(50,90)。 裂纹能量密度是材料平面(44,84)的函数,并且表示可在所选择的材料平面(48,88)上释放的总弹性应变能量密度的部分。 基于裂化能量密度确定裂纹平面(54,98)。 基于裂纹平面和疲劳裂纹扩展曲线(36,76)估计疲劳寿命(60,100)。
    • 10. 发明申请
    • Device and method for fatigue testing of materials
    • 材料疲劳试验装置及方法
    • US20020017144A1
    • 2002-02-14
    • US09922087
    • 2001-08-06
    • Toby J. MilesGerald DeshaisRobin J. WilliamsMartin McElhone
    • G01N003/32
    • G01N3/32G01N2203/0008G01N2203/0023G01N2203/0035G01N2203/0064G01N2203/0066G01N2203/0073G01N2203/0226G01N2203/0441G01N2203/0623
    • A device (10) for fatigue testing of materials comprises a frame (14), first and second clamping means (16,18) for holding a specimen (12) to be tested. First and second mounting means (20,22) mount the clamping means (16,18) on the frame (14). The mounting means (20,22) vibrationally isolate the clamping means (16,18) from the frame (14). Actuator means (24) moves the first clamping means (16) relative to the second clamping means (18) to apply a low cycle load on the specimen (12). Electrical insulating means (30) electrically insulate the frame (14) from the specimen (12). A shaker (26) is coupled to the second clamping means (18) to apply a high cycle load on the specimen (12). A detector (32) detects the vibration of the specimen (12) and sends an electrical signal to a control unit (42) which determines the resonant frequency of the specimen (12). The control unit (42) sends a signal to the shaker (26) to maintain the high cycle load at the resonant frequency of the specimen (12). Electrical potential drop probes (38) are provided on the specimen (12) to send a second electrical signal to the control unit (42) which is arranged to determine the rate of crack growth, the fatigue life to crack initiation and fatigue life to failure of the specimen (12).
    • 用于材料的疲劳试验的装置(10)包括框架(14),用于保持待测样品(12)的第一和第二夹紧装置(16,18)。 第一和第二安装装置(20,22)将夹紧装置(16,18)安装在框架(14)上。 安装装置(20,22)将夹紧装置(16,18)与框架(14)振动隔离。 致动器装置(24)相对于第二夹紧装置(18)移动第一夹紧装置(16),以在试样(12)上施加低的循环负荷。 电绝缘装置(30)使框架(14)与试样(12)电绝缘。 振动器(26)联接到第二夹紧装置(18),以对试样(12)施加高的循环负荷。 检测器(32)检测样本(12)的振动,并将电信号发送到确定样本(12)的共振频率的控制单元(42)。 控制单元(42)向振动器(26)发送信号,以将高周期负荷维持在样本(12)的共振频率。 在试样(12)上设有电位降探测器(38),以向控制单元(42)发送第二电信号,控制单元(42)用于确定裂纹扩展速率,裂纹开始的疲劳寿命和疲劳寿命 的样品(12)。