会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Method for kinetic characterization from temporal image sequence
    • 从时间图像序列的动力学表征方法
    • US20080120077A1
    • 2008-05-22
    • US11604590
    • 2006-11-22
    • Shih-Jong J. LeeSeho OhYuhui Y.C. ChengSamuel V. Alworth
    • Shih-Jong J. LeeSeho OhYuhui Y.C. ChengSamuel V. Alworth
    • G06G7/48
    • G06K9/00127G06K2009/3291
    • A computerized derivable kinetic characterization measurement method for live cell kinetic characterization inputs kinetic recognition data for a plurality of time frames. A single cell measurement step is performed using the kinetic recognition data for a plurality of time frames to generate single cell feature for a plurality of time frames output. The single cell feature includes cell morphological profiling feature. A kinetic measurement step uses the single cell feature for a plurality of time frames to generate kinetic feature output. A trajectory measurement step uses the single cell feature for a plurality of time frames and the kinetic feature to generate trajectory feature output. An interval measurement step uses the kinetic feature to generate interval feature output. A cell state classifier step uses the interval feature to generate cell state output. A state based measurement uses the single cell feature, the kinetic feature and the cell state to generate state based feature output.
    • 用于活细胞动力学特征的计算机可推导动力学表征测量方法输入多个时间帧的动力学识别数据。 使用多个时间帧的动力学识别数据来执行单个小区测量步骤,以生成多个时间帧输出的单个小区特征。 单细胞特征包括细胞形态分析特征。 动力学测量步骤使用多个时间帧的单细胞特征来产生动力特征输出。 轨迹测量步骤使用单个小区特征用于多个时间帧,并且所述动力特征生成轨迹特征输出。 间隔测量步骤使用动力学特征来产生间隔特征输出。 单元状态分类器步骤使用间隔特征来生成单元状态输出。 基于状态的测量使用单细胞特征,动力学特征和细胞状态来产生基于状态的特征输出。
    • 3. 发明申请
    • Method of directed feature development for image pattern recognition
    • 图像模式识别的定向特征开发方法
    • US20070297675A1
    • 2007-12-27
    • US11475644
    • 2006-06-26
    • Shih-Jong J. LeeSeho Oh
    • Shih-Jong J. LeeSeho Oh
    • G06K9/62G06K9/46G06K9/66
    • G06K9/623G06K9/6254
    • A computerized directed feature development method receives an initial feature list, a learning image and object masks. Interactive feature enhancement is performed by human to generate feature recipe. The Interactive feature enhancement includes a visual profiling selection method and a contrast boosting method.A visual profiling selection method for computerized directed feature development receives initial feature list, initial features, learning image and object masks. Information measurement is performed to generate information scores. Ranking of the initial feature list is performed to generate a ranked feature list. Human selection is performed through a user interface to generate a profiling feature. A contrast boosting feature optimization method performs extreme example specification by human to generate updated montage. Extreme directed feature ranking is performed to generate extreme ranked features. Contrast boosting feature generation is performed to generate new features and new feature generation rules.
    • 计算机定向特征开发方法接收初始特征列表,学习图像和对象掩模。 交互功能增强是由人执行以产生特征配方。 交互功能增强功能包括视觉分析选择方法和对比度增强方法。 用于计算机定向特征开发的视觉分析选择方法接收初始特征列表,初始特征,学习图像和对象掩码。 执行信息测量以产生信息得分。 执行初始特征列表的排名以生成排名特征列表。 通过用户界面执行人工选择以生成分析特征。 对比度提升特征优化方法由人类执行极端示例规范以生成更新的蒙太奇。 执行极端定向特征排名以产生极端排名的特征。 执行对比度增强特征生成以生成新特征和新特征生成规则。
    • 4. 发明申请
    • Method for robust analysis of biological activity in microscopy images
    • US20060072817A1
    • 2006-04-06
    • US10952579
    • 2004-09-29
    • Shih-Jong LeeSamuel Alworth
    • Shih-Jong LeeSamuel Alworth
    • G06K9/34
    • G06K9/00127
    • A robust object segmentation method for analysis of biological activity receives an input image and performs segmentation confidence mapping using the input image to generate segmentation confidence map output. A thresholding is performed using the object segmentation confidence map to generate a high confidence object mask output. An object segmentation confidence mapping method for analysis of biological activity receives an input image and performs segmentation decision to create segmentation decision result. A difference operation is performed to generate the segmentation decision result. A confidence mapping is performed using the difference result to generate segmentation confidence. An object level robust analysis method for biological activity receives an input image and performs object segmentation using the input image to create object segmentation result. A robust object feature measurement is performed to generate robust object feature result. An FOV level robust analysis method for biological activity receives a plurality of object feature results and performs robust FOV summary feature extraction to create robust FOV summary features. A FOV regulated feature extraction is performed to generate FOV regulated features. A FOV regulated feature extraction method for biological activity receives a plurality of object feature results and performs control object selection using the plurality of object feature results to generate control objects output. A FOV regulated feature extraction is performed to generate FOV regulation features output. An object feature FOV regulation is performed using the plurality of object feature results and the FOV regulation features to generate FOV regulated object features output. A sample level robust analysis method for biological activity receives a plurality of FOV feature results and performs robust sample summary feature extraction to create robust sample summary features. A sample regulated feature extraction is performed to generate sample regulated features. An assay level robust analysis method for biological activity receives a plurality of sample feature results and performs robust assay summary feature extraction to create robust assay summary features. An assay regulated feature extraction is performed to generate assay regulated features.
    • 6. 发明申请
    • Object based boundary refinement method
    • 基于对象的边界细化方法
    • US20060285743A1
    • 2006-12-21
    • US11165561
    • 2005-06-20
    • Seho OhShih-Jong Lee
    • Seho OhShih-Jong Lee
    • G06K9/00G06K9/48
    • G06K9/0014G06K9/34G06T7/0012G06T7/12G06T7/155G06T2207/20104G06T2207/20192G06T2207/30024
    • An object based boundary refinement method for object segmentation in digital images receives an image and a single initial object region of interest and performs refinement zone definition using the initial object regions of interest to generate refinement zones output. A directional edge enhancement is performed using the input image and the refinement zones to generate directional enhanced region of interest output. A radial detection is performed using the input image the refinement zones and the directional enhanced region of interest to generate radial detection mask output. In addition, a final shaping is performed using the radial detection mask having single object region output. A directional edge enhancement method determining pixel specific edge contrast enhancement direction according to the object structure direction near the pixel consists receives an image and refinement zones and performs 1D horizontal distance transform and 1D vertical distance transform using the refinement zones to generate horizontal distance map and vertical distance map outputs. A neighboring direction determination is performed using the horizontal distance map and the vertical distance map to generate neighboring image output. In addition, a directional edge contrast calculation using the neighboring image and input image having directional enhanced region of interest output.
    • 用于数字图像中对象分割的基于对象的边界细化方法接收图像和感兴趣的单个初始对象区域,并使用感兴趣的初始对象区域执行细化区域定义,以生成细化区域输出。 使用输入图像和细化区域来执行方向边缘增强以产生方向增强的兴趣区域输出。 使用输入图像进行径向检测,该细化区域和方向增强区域用于产生径向检测掩模输出。 另外,使用具有单个物体区域输出的径向检测掩模进行最终成形。 根据像素附近的物体结构方向确定像素特征边缘对比度增强方向的方向边缘增强方法包括接收图像和细化区域,并使用细化区域进行1D水平距离变换和1D垂直距离变换,以生成水平距离图和垂直 距离图输出。 使用水平距离图和垂直距离图执行相邻方向确定以生成相邻图像输出。 另外,使用相邻图像的方向边缘对比度计算和具有方向增强感兴趣区域输出的输入图像。