会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • Method for kinetic characterization from temporal image sequence
    • 从时间图像序列的动力学表征方法
    • US20110274339A1
    • 2011-11-10
    • US13135711
    • 2011-07-13
    • Shih-Jong J. LeeSeho OhSamuel V. Alworth
    • Shih-Jong J. LeeSeho OhSamuel V. Alworth
    • G06K9/00
    • G06K9/00127G06K2009/3291
    • A computerized derivable kinetic characterization measurement method for live cell kinetic characterization inputs kinetic recognition data for a plurality of time frames. A single cell measurement step is performed using the kinetic recognition data for a plurality of time frames to generate single cell feature for a plurality of time frames output. The single cell feature includes cell morphological profiling feature. A kinetic measurement step uses the single cell feature for a plurality of time frames to generate kinetic feature output. A trajectory measurement step uses the single cell feature for a plurality of time frames and the kinetic feature to generate trajectory feature output. An interval measurement step uses the kinetic feature to generate interval feature output. A cell state classifier step uses the interval feature to generate cell state output. A state based measurement uses the single cell feature, the kinetic feature and the cell state to generate state based feature output.
    • 用于活细胞动力学特征的计算机可推导动力学表征测量方法输入多个时间帧的动力学识别数据。 使用多个时间帧的动力学识别数据来执行单个小区测量步骤,以生成多个时间帧输出的单个小区特征。 单细胞特征包括细胞形态分析特征。 动力学测量步骤使用多个时间帧的单细胞特征来产生动力特征输出。 轨迹测量步骤使用单个小区特征用于多个时间帧,并且所述动力特征生成轨迹特征输出。 间隔测量步骤使用动力学特征来产生间隔特征输出。 单元状态分类器步骤使用间隔特征来生成单元格状态输出。 基于状态的测量使用单细胞特征,动力学特征和细胞状态来产生基于状态的特征输出。
    • 6. 发明申请
    • Method for kinetic characterization from temporal image sequence
    • 从时间图像序列的动力学表征方法
    • US20080120077A1
    • 2008-05-22
    • US11604590
    • 2006-11-22
    • Shih-Jong J. LeeSeho OhYuhui Y.C. ChengSamuel V. Alworth
    • Shih-Jong J. LeeSeho OhYuhui Y.C. ChengSamuel V. Alworth
    • G06G7/48
    • G06K9/00127G06K2009/3291
    • A computerized derivable kinetic characterization measurement method for live cell kinetic characterization inputs kinetic recognition data for a plurality of time frames. A single cell measurement step is performed using the kinetic recognition data for a plurality of time frames to generate single cell feature for a plurality of time frames output. The single cell feature includes cell morphological profiling feature. A kinetic measurement step uses the single cell feature for a plurality of time frames to generate kinetic feature output. A trajectory measurement step uses the single cell feature for a plurality of time frames and the kinetic feature to generate trajectory feature output. An interval measurement step uses the kinetic feature to generate interval feature output. A cell state classifier step uses the interval feature to generate cell state output. A state based measurement uses the single cell feature, the kinetic feature and the cell state to generate state based feature output.
    • 用于活细胞动力学特征的计算机可推导动力学表征测量方法输入多个时间帧的动力学识别数据。 使用多个时间帧的动力学识别数据来执行单个小区测量步骤,以生成多个时间帧输出的单个小区特征。 单细胞特征包括细胞形态分析特征。 动力学测量步骤使用多个时间帧的单细胞特征来产生动力特征输出。 轨迹测量步骤使用单个小区特征用于多个时间帧,并且所述动力特征生成轨迹特征输出。 间隔测量步骤使用动力学特征来产生间隔特征输出。 单元状态分类器步骤使用间隔特征来生成单元状态输出。 基于状态的测量使用单细胞特征,动力学特征和细胞状态来产生基于状态的特征输出。
    • 9. 发明授权
    • Structure-guided automatic learning for image feature enhancement
    • 结构引导自动学习图像特征增强
    • US06507675B1
    • 2003-01-14
    • US09815466
    • 2001-03-23
    • Shih-Jong J. LeeSeho OhChi-Chou Huang
    • Shih-Jong J. LeeSeho OhChi-Chou Huang
    • G06K940
    • G06K9/00127G06K9/4604G06T5/002G06T5/30G06T2207/20081
    • A structure-guided automatic learning system for image feature enhancement uses a learning image together with an application domain structure and detection target specification to produce a feature enhancement image processing recipe. An enhancement goodness measure is used to select between alternatives in the learning process. The feature enhancement recipe is used in an application module to process input images and produce a feature enhanced image output. Calipers are used for application domain structure and detection target specification. To unify the processing steps for all caliper specifications, a non-directional box caliper defined region such as a circle caliper or an arc caliper or other connected structures can be converted into a directional box caliper defined region so that a directional box caliper based feature enhancement method can be applied. The process can be inverted to convert a converted directional box caliper region back to the original format.
    • 用于图像特征增强的结构引导自动学习系统使用学习图像以及应用领域结构和检测目标规范来产生特征增强图像处理配方。 增强善良度量被用于在学习过程中选择替代方案。 特征增强配方在应用模块中用于处理输入图像并产生特征增强图像输出。 卡尺用于应用领域结构和检测目标规范。 为了统一所有卡尺规格的加工步骤,可以将诸如圆形卡尺或弧形卡尺或其他连接结构的非方向盒卡尺定义的区域转换成定向盒卡尺规定的区域,以便基于方向盒卡尺的特征增强 方法可以应用。 该过程可以反转,以将转换的方向盒卡尺区域转换回原始格式。
    • 10. 发明授权
    • Teachable pattern scoring method
    • 可教模式评分方法
    • US09152884B2
    • 2015-10-06
    • US13507115
    • 2012-06-05
    • Shih-Jong J. LeeChi-Chou Huang
    • Shih-Jong J. LeeChi-Chou Huang
    • G06K9/62G06K9/00
    • G06K9/6256G06K9/0014G06K9/00147G06K9/62G06K9/6272
    • A computerized teachable pattern scoring method receives a teaching image and region pattern labels. A region segmentation is performed using the teaching image to generate regions of interest output. A feature measurement is performed using the teaching image and the regions of interest to generate region features output. A pattern score learning is performed using the region features and the region pattern labels to generate pattern score recipe output. A computerized region classification method using the region features and the pattern score recipe to generate pattern scores output. A region classification is performed using the pattern scores and region features to generate region class output.
    • 计算机化教学模式评分方法接收教学图像和区域模式标签。 使用教学图像执行区域分割以产生感兴趣的区域输出。 使用教学图像和感兴趣区域来执行特征测量以产生区域特征输出。 使用区域特征和区域图案标签来执行图案分数学习以生成图案分数配方输出。 一种使用区域特征和模式分数配方的计算机化区域分类方法来生成模式分数输出。 使用模式分数和区域特征来执行区域分类以产生区域类别输出。