会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • METHOD AND SYSTEM FOR PERSONALIZED VOICE DIALOGUE
    • 用于个性化语音对话的方法和系统
    • US20080080678A1
    • 2008-04-03
    • US11536854
    • 2006-09-29
    • Changxue C. MaYan Ming ChengSteven J. NowlanDale W. RussellYuan-Jun Wei
    • Changxue C. MaYan Ming ChengSteven J. NowlanDale W. RussellYuan-Jun Wei
    • H04M11/00
    • H04M3/4936G10L2015/226
    • A method (10) and system (200) for personalized voice dialogue can include tracking (12) a user's use of voice dialogue states or transitions and progressively offering (16) a user more efficient voice dialogue transitions or states such as voice dialogue transition or states having fewer and fewer words. The tracking of dialog states or transitions can include tracking (14) of repeated use of the dialogue states or transitions. A user can be prompted to create a new transition or state. The prompting (18) and confirmation and verification (20) by the user of a new transition or state can be done using SCXML language. The method can further include instantiating (21) the new transition or state with voice tags or words and performing (22) speech recognition using the new transition or state. The method can again determine (23) if the new transition or state is a repeat transition or state.
    • 用于个性化语音对话的方法(10)和系统(200)可以包括跟踪(12)用户对语音对话状态或转换的使用,并逐渐提供(16)用户更有效的语音对话转换或状态,例如语音对话转换或 状态越来越少的单词。 跟踪对话状态或转换可以包括跟踪(14)重复使用对话状态或转换。 可以提示用户创建新的转换或状态。 用户可以使用SCXML语言完成新的转换或状态的提示(18)和确认(20)。 该方法还可以包括使用语音标签或单词实例化(21)新的转换或状态,并使用新的转换或状态执行(22)语音识别。 该方法可以再次确定(23)如果新的转换或状态是重复转换或状态。
    • 3. 发明授权
    • Speech dialog method and system
    • 语音对话方法和系统
    • US07181397B2
    • 2007-02-20
    • US11118670
    • 2005-04-29
    • Changxue C. MaYan M. ChengChen LiuTed MazurkiewiczSteven J. NowlanJames R. TalleyYuan-Jun Wei
    • Changxue C. MaYan M. ChengChen LiuTed MazurkiewiczSteven J. NowlanJames R. TalleyYuan-Jun Wei
    • G10L15/14
    • G10L17/26G10L13/033G10L15/22
    • An electronic device (300) for speech dialog includes functions that receive (305, 105) a speech phrase that comprises a request phrase that includes an instantiated variable (215), generate (335, 115) pitch and voicing characteristics (315) of the instantiated variable, and performs speech recognition (319, 125) of the instantiated variable to determine a most likely set of acoustic states (235). The electronic device may generate (335, 140) a synthesized value of the instantiated variable using the most likely set of acoustic states and the pitch and voicing characteristics of the instantiated variable. The electronic device may use a table of previously entered values of variables that have been determined to be unique, and in which the values are associated with a most likely set of acoustic states and the pitch and voicing characteristics determined at the receipt of each value to disambiguate (425, 430) a newly received instantiated variable.
    • 一种用于语音对话的电子设备(300)包括接收(305,105)语音短语的功能,该语音短语包括包含实例化变量(215)的请求短语,生成(335,115)音调和语音特征(315) 并且执行所述实例化变量的语音识别(319,125)以确定最可能的一组声学状态(235)。 电子设备可以使用最可能的声学状态集合和实例化变量的音调和语音特征来生成(335,140)实例化变量的合成值。 电子设备可以使用已经被确定为唯一的先前输入的变量值的表,并且其中值与最可能的一组声学状态相关联,并且在接收每个值时确定的音高和发声特性 消除歧义(425,430)一个新接收的实例变量。
    • 4. 发明申请
    • Speech dialog method and system
    • 语音对话方法和系统
    • US20060247921A1
    • 2006-11-02
    • US11118670
    • 2005-04-29
    • Changxue MaYan ChengChen LiuTed MazurkiewiczSteven NowlanJames TalleyYuan-Jun Wei
    • Changxue MaYan ChengChen LiuTed MazurkiewiczSteven NowlanJames TalleyYuan-Jun Wei
    • G10L11/04
    • G10L17/26G10L13/033G10L15/22
    • An electronic device (300) for speech dialog includes functions that receive (305, 105) a speech phrase that comprises a request phrase that includes an instantiated variable (215), generate (335, 115) pitch and voicing characteristics (315) of the instantiated variable, and performs voice recognition (319, 125) of the instantiated variable to determine a most likely set of acoustic states (235). The electronic device may generate (335, 140) a synthesized value of the instantiated variable using the most likely set of acoustic states and the pitch and voicing characteristics of the instantiated variable. The electronic device may use a table of previously entered values of variables that have been determined to be unique, and in which the values are associated with a most likely set of acoustic states and the pitch and voicing characteristics determined at the receipt of each value to disambiguate (425, 430) a newly received instantiated variable.
    • 一种用于语音对话的电子设备(300)包括接收(305,105)语音短语的功能,该语音短语包括包含实例化变量(215)的请求短语,产生(335,115)音调和语音特征(315) 并且执行所述实例化变量的语音识别(319,125)以确定最可能的一组声学状态(235)。 电子设备可以使用最可能的声学状态集合和实例化变量的音调和语音特征来生成(335,140)实例化变量的合成值。 电子设备可以使用已经被确定为唯一的先前输入的变量值的表,并且其中值与最可能的一组声学状态相关联,并且在接收每个值时确定的音高和发声特性 消除歧义(425,430)一个新接收的实例变量。
    • 8. 发明授权
    • Speech recognition by dynamical noise model adaptation
    • 动态噪声模型适应的语音识别
    • US06950796B2
    • 2005-09-27
    • US10007886
    • 2001-11-05
    • Changxue MaYuan-Jun Wei
    • Changxue MaYuan-Jun Wei
    • G10L15/12G10L15/14G10L15/20G10L21/0216G10L15/06G10L21/02
    • G10L15/20G10L2021/02168
    • The invention provides a Hidden Markov Model (132) based automated speech recognition system (100) that dynamically adapts to changing background noise by detecting long pauses in speech, and for each pause processing background noise during the pause to extract a feature vector that characterizes the background noise, identifying a Gaussian mixture component of noise states that most closely matches the extracted feature vector, and updating the mean of the identified Gaussian mixture component so that it more closely matches the extracted feature vector, and consequently more closely matches the current noise environment. Alternatively, the process is also applied to refine the Gaussian mixtures associated with other emitting states of the Hidden Markov Model.
    • 本发明提供了一种基于隐马尔可夫模型(132)的自动化语音识别系统(100),其通过检测语音中的长暂停动态地适应变化的背景噪声,并且对于暂停期间的每个暂停处理背景噪声来提取表征 背景噪声,识别与提取的特征向量最紧密匹配的噪声状态的高斯混合分量,以及更新所识别的高斯混合分量的平均值,使得其与提取的特征向量更紧密地匹配,并且因此更紧密地匹配当前噪声环境 。 或者,该过程也被应用于改进与隐马尔可夫模型的其他发射状态相关联的高斯混合。