会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
    • 半导体基体及其制造方法,半导体晶体制造方法
    • US20070026643A1
    • 2007-02-01
    • US11529905
    • 2006-09-29
    • Kazuyuki TadatomoHiroaki OkagawaYoichiro OuchiMasahiro Koto
    • Kazuyuki TadatomoHiroaki OkagawaYoichiro OuchiMasahiro Koto
    • H01L21/20
    • C30B29/403C30B25/02C30B25/18C30B25/183C30B29/40C30B29/406H01L21/0237H01L21/02389H01L21/0242H01L21/0254H01L21/0262H01L21/02639H01L21/02642H01L21/02647H01L21/0265H01L33/007
    • A growth plane of substrate 1 is processed to have a concavo-convex surface. The bottom of the concave part may be masked. When a crystal is grown by vapor phase growth using this substrate, an ingredient gas does not sufficiently reach the inside of a concave part 12, and therefore, a crystal growth occurs only from an upper part of a convex part 11. As shown in FIG. 1(b), therefore, a crystal unit 20 occurs when the crystal growth is started, and as the crystal growth proceeds, films grown in the lateral direction from the upper part of the convex part 11 as a starting point are connected to cover the concavo-convex surface of the substrate 1, leaving a cavity 13 in the concave part, as shown in FIG. 1(c), thereby giving a crystal layer 2, whereby the semiconductor base of the present invention is obtained. In this case, the part grown in the lateral direction, or the upper part of the concave part 12 has a low dislocation region and the crystal layer prepared has high quality. The manufacturing method of the semiconductor crystal of the present invention divides this semiconductor base into the substrate 1 and the crystal layer 2 at the cavity part thereof to give a semiconductor crystal.
    • 基板1的生长面被加工成具有凹凸表面。 凹部的底部可能被遮蔽。 当通过使用该基板的气相生长生长晶体时,成分气体不能充分到达凹部12的内部,因此仅从凸部11的上部仅发生晶体生长。如图 。 因此,如图1(b)所示,当晶体生长开始时发生晶体单元20,并且随着晶体生长的进行,从作为起点的凸部11的上部沿横向方向生长的膜被连接 衬底1的凹凸表面,在凹部中留下空腔13,如图1所示。 如图1(c)所示,得到结晶层2,得到本发明的半导体基底。 在这种情况下,沿横向生长的部分或凹部12的上部具有低位错区域,并且所制备的晶体层具有高质量。 本发明的半导体晶体的制造方法将该半导体基体在其空腔部分分割成基板1和晶体层2,得到半导体晶体。
    • 4. 发明授权
    • Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
    • 半导体基体及其制造方法,半导体晶体制造方法
    • US07589001B2
    • 2009-09-15
    • US11541201
    • 2006-09-29
    • Kazuyuki TadatomoHiroaki OkagawaYoichiro OuchiMasahiro Koto
    • Kazuyuki TadatomoHiroaki OkagawaYoichiro OuchiMasahiro Koto
    • H01L21/20
    • C30B29/403C30B25/02C30B25/18C30B25/183C30B29/40C30B29/406H01L21/0237H01L21/02389H01L21/0242H01L21/0254H01L21/0262H01L21/02639H01L21/02642H01L21/02647H01L21/0265H01L33/007
    • A growth plane of substrate 1 is processed to have a concavo-convex surface. The bottom of the concave part may be masked. When a crystal is grown by vapor phase growth using this substrate, an ingredient gas does not sufficiently reach the inside of a concave part 12, and therefore, a crystal growth occurs only from an upper part of a convex part 11. As shown in FIG. 1(b), therefore, a crystal unit 20 occurs when the crystal growth is started, and as the crystal growth proceeds, films grown in the lateral direction from the upper part of the convex part 11 as a starting point are connected to cover the concavo-convex surface of the substrate 1, leaving a cavity 13 in the concave part, as shown in FIG. 1(c), thereby giving a crystal layer 2, whereby the semiconductor base of the present invention is obtained. In this case, the part grown in the lateral direction, or the upper part of the concave part 12 has a low dislocation region and the crystal layer prepared has high quality. The manufacturing method of the semiconductor crystal of the present invention divides this semiconductor base into the substrate 1 and the crystal layer 2 at the cavity part thereof to give a semiconductor crystal.
    • 基板1的生长面被加工成具有凹凸表面。 凹部的底部可能被遮蔽。 当通过使用该基板的气相生长生长晶体时,成分气体不能充分到达凹部12的内部,因此仅从凸部11的上部仅发生晶体生长。如图 。 因此,如图1(b)所示,当晶体生长开始时发生晶体单元20,并且随着晶体生长的进行,从作为起点的凸部11的上部沿横向方向生长的膜被连接 衬底1的凹凸表面,在凹部中留下空腔13,如图1所示。 如图1(c)所示,得到结晶层2,得到本发明的半导体基底。 在这种情况下,沿横向生长的部分或凹部12的上部具有低位错区域,并且所制备的晶体层具有高质量。 本发明的半导体晶体的制造方法将该半导体基体在其空腔部分分割成基板1和晶体层2,得到半导体晶体。
    • 7. 发明授权
    • Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
    • 半导体基体及其制造方法,半导体晶体制造方法
    • US07115486B2
    • 2006-10-03
    • US10842777
    • 2004-05-11
    • Kazuyuki TadatomoHiroaki OkagawaYoichiro OuchiMasahiro Koto
    • Kazuyuki TadatomoHiroaki OkagawaYoichiro OuchiMasahiro Koto
    • H01L21/20
    • C30B29/403C30B25/02C30B25/18C30B25/183C30B29/40C30B29/406H01L21/0237H01L21/02389H01L21/0242H01L21/0254H01L21/0262H01L21/02639H01L21/02642H01L21/02647H01L21/0265H01L33/007
    • A growth plane of substrate 1 is processed to have a concavo-convex surface. The bottom of the concave part may be masked. When a crystal is grown by vapor phase growth using this substrate, an ingredient gas does not sufficiently reach the inside of a concave part 12, and therefore, a crystal growth occurs only from an upper part of a convex part 11. As shown in FIG. 1(b), therefore, a crystal unit 20 occurs when the crystal growth is started, and as the crystal growth proceeds, films grown in the lateral direction from the upper part of the convex part 11 as a starting point are connected to cover the concavo-convex surface of the substrate 1, leaving a cavity 13 in the concave part, as shown in FIG. 1(c), thereby giving a crystal layer 2, whereby the semiconductor base of the present invention is obtained. In this case, the part grown in the lateral direction, or the upper part of the concave part 12 has a low dislocation region and the crystal layer prepared has high quality. The manufacturing method of the semiconductor crystal of the present invention divides this semiconductor base into the substrate 1 and the crystal layer 2 at the cavity part thereof to give a semiconductor crystal.
    • 基板1的生长面被加工成具有凹凸表面。 凹部的底部可能被遮蔽。 当通过使用该基板的气相生长生长晶体时,成分气体不能充分到达凹部12的内部,因此仅从凸部11的上部仅发生晶体生长。如图 。 因此,如图1(b)所示,当晶体生长开始时发生晶体单元20,并且随着晶体生长的进行,从作为起点的凸部11的上部沿横向方向生长的膜被连接 衬底1的凹凸表面,在凹部中留下空腔13,如图1所示。 如图1(c)所示,得到结晶层2,得到本发明的半导体基底。 在这种情况下,沿横向生长的部分或凹部12的上部具有低位错区域,并且所制备的晶体层具有高质量。 本发明的半导体晶体的制造方法将该半导体基体在其空腔部分分割成基板1和晶体层2,得到半导体晶体。
    • 10. 发明授权
    • GaN group semiconductor light-emitting element with concave and convex structures on the substrate and a production method thereof
    • 在基板上具有凹凸结构的GaN族半导体发光元件及其制造方法
    • US07053420B2
    • 2006-05-30
    • US10472324
    • 2002-03-20
    • Kazuyuki TadatomoHiroaki OkagawaYoichiro OuchiTakashi Tsunekawa
    • Kazuyuki TadatomoHiroaki OkagawaYoichiro OuchiTakashi Tsunekawa
    • H01L29/22H01L29/24H01L29/227
    • H01L33/22H01L33/12H01L33/32
    • Concaves and convexes 1a are formed by processing the surface layer of a first layer 1, and second layer 2 having a different refractive index from the first layer is grown while burying the concaves and convexes (or first crystal 10 is grown as concaves and convexes on crystal layer S to be the base of the growth, and second crystal 20 is grown, which has a different refractive index from the first crystal). After forming these concavo-convex refractive index interfaces 1a (10a), an element structure, wherein semiconductor crystal layers containing a light-emitting layer A are laminated, is formed. As a result, the light in the lateral direction, which is generated in the light-emitting layer changes its direction by an influence of the concavo-convex refractive index interface and heads toward the outside. Particularly, when an ultraviolet light is to be emitted using InGaN as a material of a light-emitting layer, a quantum well structure is employed and all the layers between the quantum well structure and the low temperature buffer layer are formed of a GaN crystal, removing AlGaN. The quantum well structure preferably consists of a well layer made of InGaN and a barrier layer made of GaN, and the thickness of the barrier layer is preferably 6 nm–30 nm.
    • 通过处理第一层1的表面层形成凹凸1a,同时生长具有与第一层不同的折射率的第二层2,同时埋入凹凸(或第一晶体10生长为凹凸) 在晶体层S上作为生长的基底,生长第二晶体20,其具有与第一晶体不同的折射率)。 在形成这些凹凸折射率界面1a(10a)之后,形成其中层叠有发光层A的半导体晶体层的元件结构。 结果,在发光层中产生的横向的光通过凹凸折射率界面的影响而朝向外部改变其方向。 特别地,当使用InGaN作为发光层的材料发射紫外光时,采用量子阱结构,量子阱结构和低温缓冲层之间的所有层由GaN晶体形成, 去除AlGaN。 量子阱结构优选由由InGaN制成的阱层和由GaN制成的阻挡层组成,并且阻挡层的厚度优选为6nm〜30nm。