会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Clustering botnet behavior using parameterized models
    • 使用参数化模型集群僵尸网络行为
    • US08745731B2
    • 2014-06-03
    • US12061664
    • 2008-04-03
    • Kannan AchanYinglian XieFang Yu
    • Kannan AchanYinglian XieFang Yu
    • G06F11/00G06F12/14G06F12/16G06F7/04
    • H04L63/1441H04L2463/144
    • Identification and prevention of email spam that originates from botnets may be performed by finding similarity in their host property and behavior patterns using a set of labeled data. Clustering models of host properties pertaining to previously identified and appropriately tagged botnet hosts may be learned. Given labeled data, each botnet may be examined individually and a clustering model learned to reflect upon a set of selected host properties. Once a model has been learned for every botnet, clustering behavior may be used to look for host properties that fit into a profile. Such traffic can be either discarded or tagged for subsequent analysis and can also be used to profile botnets preventing them from launching other attacks. In addition, models of individual botnets can be further clustered to form superclusters, which can help understand botnet behavior and detect future attacks.
    • 识别和预防来自僵尸网络的电子邮件垃圾邮件可以通过使用一组标签数据来查找其主机属性和行为模式的相似性来执行。 可以了解与以前识别和适当标记的僵尸网络主机相关的主机属性的聚类模型。 给定标签数据,可以单独检查每个僵尸网络,并且学习聚类模型以反映一组选定的主机属性。 一旦为每个僵尸网络学习了一个模型,可以使用聚类行为来查找适合于配置文件的主机属性。 这样的流量可以被丢弃或被标记用于后续分析,并且还可以用于描述僵尸网络,防止他们发起其他攻击。 另外,个人僵尸网络的模型可以进一步集群以形成超级集群,这可以帮助了解僵尸网络行为并检测未来的攻击。
    • 4. 发明申请
    • CLUSTERING BOTNET BEHAVIOR USING PARAMETERIZED MODELS
    • 使用参数化模型聚合BOTNET行为
    • US20090254989A1
    • 2009-10-08
    • US12061664
    • 2008-04-03
    • Kannan AchanYinglian XieFang Yu
    • Kannan AchanYinglian XieFang Yu
    • G06F11/00G06F9/455
    • H04L63/1441H04L2463/144
    • Identification and prevention of email spam that originates from botnets may be performed by finding similarity in their host property and behavior patterns using a set of labeled data. Clustering models of host properties pertaining to previously identified and appropriately tagged botnet hosts may be learned. Given labeled data, each botnet may be examined individually and a clustering model learned to reflect upon a set of selected host properties. Once a model has been learned for every botnet, clustering behavior may be used to look for host properties that fit into a profile. Such traffic can be either discarded or tagged for subsequent analysis and can also be used to profile botnets preventing them from launching other attacks. In addition, models of individual botnets can be further clustered to form superclusters, which can help understand botnet behavior and detect future attacks.
    • 识别和预防来自僵尸网络的电子邮件垃圾邮件可以通过使用一组标签数据来查找其主机属性和行为模式的相似性来执行。 可以了解与以前识别和适当标记的僵尸网络主机相关的主机属性的聚类模型。 给定标签数据,可以单独检查每个僵尸网络,并且学习聚类模型以反映一组选定的主机属性。 一旦为每个僵尸网络学习了一个模型,可以使用聚类行为来查找适合于配置文件的主机属性。 这样的流量可以被丢弃或被标记用于后续分析,并且还可以用于描述僵尸网络,防止他们发起其他攻击。 另外,个人僵尸网络的模型可以进一步集群以形成超级集群,这可以帮助了解僵尸网络行为并检测未来的攻击。
    • 6. 发明授权
    • Mining user behavior data for IP address space intelligence
    • 挖掘IP地址空间智能的用户行为数据
    • US08789171B2
    • 2014-07-22
    • US12055321
    • 2008-03-26
    • Ivan OsipkovGeoffrey HultenJohn MehrYinglian XieFang Yu
    • Ivan OsipkovGeoffrey HultenJohn MehrYinglian XieFang Yu
    • H04L29/06
    • H04L67/22H04L61/2061H04L63/1408H04L2463/144
    • The claimed subject matter is directed to mining user behavior data for increasing Internet Protocol (“IP”) space intelligence. Specifically, the claimed subject matter provides a method and system of mining user behavior within an IP address space and the application of the IP address space intelligence derived from the mined user behavior.In one embodiment, the IP address space intelligence is formed and/or increased with information obtained from the mined user behavior data. A system of uniquely-identified users is monitored and their behavior within the IP address space is recorded. Further data is mined from estimated characteristics about the user, including the nature of the IP address the user uses to log into the service, and characterizing the IP address according to a network type.
    • 所要求保护的主题涉及用于增加因特网协议(“IP”)空间智能的采矿用户行为数据。 具体地,所要求保护的主题提供了在IP地址空间内挖掘用户行为的方法和系统,以及从开采的用户行为导出的IP地址空间智能的应用。 在一个实施例中,使用从开采的用户行为数据获得的信息来形成和/或增加IP地址空间智能。 监视唯一标识的用户的系统,并记录其在IP地址空间内的行为。 进一步的数据从关于用户的估计特征开始,包括用户用于登录服务的IP地址的性质,以及根据网络类型表征IP地址。
    • 7. 发明申请
    • MINING USER BEHAVIOR DATA FOR IP ADDRESS SPACE INTELLIGENCE
    • 挖掘用户行为数据进行IP地址空间智能
    • US20090249480A1
    • 2009-10-01
    • US12055321
    • 2008-03-26
    • Ivan OsipkovGeoffrey HultenJohn MehrYinglian XieFang Yu
    • Ivan OsipkovGeoffrey HultenJohn MehrYinglian XieFang Yu
    • G06F11/00
    • H04L67/22H04L61/2061H04L63/1408H04L2463/144
    • The claimed subject matter is directed to mining user behavior data for increasing Internet Protocol (“IP”) space intelligence. Specifically, the claimed subject matter provides a method and system of mining user behavior within an IP address space and the application of the IP address space intelligence derived from the mined user behavior.In one embodiment, the IP address space intelligence is formed and/or increased with information obtained from the mined user behavior data. A system of uniquely-identified users is monitored and their behavior within the IP address space is recorded. Further data is mined from estimated characteristics about the user, including the nature of the IP address the user uses to log into the service, and characterizing the IP address according to a network type.
    • 所要求保护的主题涉及用于增加因特网协议(“IP”)空间智能的采矿用户行为数据。 具体地,所要求保护的主题提供了在IP地址空间内挖掘用户行为的方法和系统,以及从开采的用户行为导出的IP地址空间智能的应用。 在一个实施例中,使用从开采的用户行为数据获得的信息来形成和/或增加IP地址空间智能。 监视唯一标识的用户的系统,并记录其在IP地址空间内的行为。 进一步的数据从关于用户的估计特征开始,包括用户用于登录服务的IP地址的性质,以及根据网络类型表征IP地址。
    • 8. 发明申请
    • FINGERPRINTING EVENT LOGS FOR SYSTEM MANAGEMENT TROUBLESHOOTING
    • 指示事件日志用于系统管理故障排除
    • US20100223499A1
    • 2010-09-02
    • US12394451
    • 2009-02-27
    • Rina PanigrahyChad VerbowskiYinglian XieJunfeng YangDing Yuan
    • Rina PanigrahyChad VerbowskiYinglian XieJunfeng YangDing Yuan
    • G06F11/28G06F11/07G06F17/30
    • G06F11/079G06F11/0709G06F11/0715H04L41/16
    • A technique for automatically detecting and correcting configuration errors in a computing system. In a learning process, recurring event sequences, including e.g., registry access events, are identified from event logs, and corresponding rules are developed. In a detecting phase, the rules are applied to detected event sequences to identify violations and to recover from failures. Event sequences across multiple hosts can be analyzed. The recurring event sequences are identified efficiently by flattening a hierarchical sequence of the events such as is obtained from the Sequitur algorithm. A trie is generated from the recurring event sequences and edges of nodes of the trie are marked as rule edges or non-rule edges. A rule is formed from a set of nodes connected by rule edges. The rules can be updated as additional event sequences are analyzed. False positive suppression policies include a violation- consistency policy and an expected event disappearance policy.
    • 一种自动检测和纠正计算系统中配置错误的技术。 在学习过程中,从事件日志中识别循环事件序列,包括例如注册表访问事件,并且开发相应的规则。 在检测阶段,将规则应用于检测到的事件序列以识别违例行为并从故障中恢复。 可以分析多个主机的事件序列。 通过对诸如从Sequitur算法获得的事件的分层序列进行平坦化来有效地识别循环事件序列。 从循环事件序列生成特里(trie),并将特里斯的节点的边缘标记为规则边缘或非规则边缘。 规则是由一组通过规则边连接的节点形成的。 当分析附加事件序列时,可以更新规则。 虚假的积极抑制政策包括违规行为政策和预期的事件消失政策。
    • 9. 发明授权
    • Fingerprinting event logs for system management troubleshooting
    • 指纹事件日志用于系统管理故障排除
    • US08069374B2
    • 2011-11-29
    • US12394451
    • 2009-02-27
    • Rina PanigrahyChad VerbowskiYinglian XieJunfeng YangDing Yuan
    • Rina PanigrahyChad VerbowskiYinglian XieJunfeng YangDing Yuan
    • G06F11/00
    • G06F11/079G06F11/0709G06F11/0715H04L41/16
    • A technique for automatically detecting and correcting configuration errors in a computing system. In a learning process, recurring event sequences, including e.g., registry access events, are identified from event logs, and corresponding rules are developed. In a detecting phase, the rules are applied to detected event sequences to identify violations and to recover from failures. Event sequences across multiple hosts can be analyzed. The recurring event sequences are identified efficiently by flattening a hierarchical sequence of the events such as is obtained from the Sequitur algorithm. A trie is generated from the recurring event sequences and edges of nodes of the trie are marked as rule edges or non-rule edges. A rule is formed from a set of nodes connected by rule edges. The rules can be updated as additional event sequences are analyzed. False positive suppression policies include a violation-consistency policy and an expected event disappearance policy.
    • 一种自动检测和纠正计算系统中配置错误的技术。 在学习过程中,从事件日志中识别循环事件序列,包括例如注册表访问事件,并且开发相应的规则。 在检测阶段,将规则应用于检测到的事件序列以识别违例行为并从故障中恢复。 可以分析多个主机的事件序列。 通过对诸如从Sequitur算法获得的事件的分层序列进行平坦化来有效地识别循环事件序列。 从循环事件序列生成特里(trie),并将特里斯的节点的边缘标记为规则边缘或非规则边缘。 规则是由一组通过规则边连接的节点形成的。 当分析附加事件序列时,可以更新规则。 虚假的积极抑制政策包括违规一致性政策和预期的事件消失政策。