会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • System and method for quantitative analysis of respiratory sinus arrhythmia
    • 呼吸窦性心律失常定量分析系统及方法
    • US09380948B1
    • 2016-07-05
    • US13950702
    • 2013-07-25
    • Men-Tzung LoYung-Hung Wang
    • Men-Tzung LoChen LinCheng-Yen WangYung-Hung WangYi-Chung ChangHan-Hwa HuKun Hu
    • A61B5/00A61B5/0205
    • A61B5/0205A61B5/024A61B5/0816A61B5/486A61B5/7253A61B5/7278
    • A computer-assisted method for quantitative analysis of respiratory sinus arrhythmia (RSA) includes obtaining a time series of a cardiac interval signal from an individual, obtaining a time series of a respiratory signal from the individual; decomposing the cardiac interval signal into a first group of ensemble empirical modes; obtaining, by a computer system, a time series of RSA instantaneous amplitude from at least one of the first group of ensemble empirical modes; decomposing the respiratory signal into a second group of ensemble empirical modes; obtaining a time series of respiratory instantaneous phase from the one of the second group of ensemble empirical modes; determining respiratory period from the time series of the respiratory instantaneous phase; and quantifying RSA in the individual according to a dependence of the RSA instantaneous amplitude on the respiratory period.
    • 用于定量分析呼吸窦性心律失常(RSA)的计算机辅助方法包括获得来自个体的心脏间隔信号的时间序列,获得来自个体的呼吸信号的时间序列; 将心脏间隔信号分解为第一组综合经验模式; 通过计算机系统从第一组整体经验模式中的至少一个获得RSA瞬时振幅的时间序列; 将呼吸信号分解成第二组综合经验模式; 从第二组综合经验模式中的一个获得呼吸瞬时相位的时间序列; 从呼吸瞬时相的时间序列确定呼吸周期; 并根据RSA瞬时振幅对呼吸周期的依赖性量化个体中的RSA。
    • 6. 发明授权
    • Accurate detection of sleep-disordered breathing
    • 准确检测睡眠呼吸障碍
    • US08103483B2
    • 2012-01-24
    • US12248024
    • 2008-10-08
    • Men-Tzung LoYanhui Liu
    • Men-Tzung LoYanhui Liu
    • G06F17/14
    • A61B5/0205A61B5/0456A61B5/08A61B5/4806A61B5/4818
    • A method for detecting sleep-disordered breathing (SDB) includes acquiring a time sequence of a physiological signal from an individual, wherein the time sequence of the physiological signal includes a oscillatory pattern, computing an oscillatory interval signal using the time sequence of the physiological signal, decomposing the oscillatory interval signal into a plurality of ensemble empirical modes, selecting one of the plurality of ensemble empirical modes, calculating at least one of average amplitude or standard deviation of the instantaneous frequency in the selected ensemble empirical mode; and identifying SDB using at least one of the average amplitude or the standard deviation of the instantaneous frequency.
    • 一种用于检测睡眠呼吸障碍(SDB)的方法包括获取来自个人的生理信号的时间序列,其中生理信号的时间序列包括振荡模式,使用生理信号的时间序列计算振荡间隔信号 将所述振荡间隔信号分解为多个整体经验模式,选择所述多个集合经验模式中的一个,计算所选集合经验模式中瞬时频率的平均幅度或标准偏差中的至少一个; 以及使用瞬时频率的平均幅度或标准偏差中的至少一个来识别SDB。
    • 8. 发明申请
    • SYSTEMS AND METHODS FOR ASSESSING DYNAMIC CEREBRAL AUTOREGULATION
    • 用于评估动态胚胎自动化的系统和方法
    • US20100125213A1
    • 2010-05-20
    • US12273386
    • 2008-11-18
    • Men-Tzung LoYanhui Liu
    • Men-Tzung LoYanhui Liu
    • A61B5/02
    • A61B8/06A61B5/02028A61B5/021A61B5/026A61B5/1455A61B5/4064A61B8/0808
    • A method for dynamic cerebral autoregulation (CA) assessment includes acquiring a blood pressure (BP) signal having a first oscillatory pattern from a first individual, acquiring a blood flow velocity (BFV) signal having a second oscillatory pattern from the first individual, decomposing the BP signal into a first group of intrinsic mode functions (IMFs), decomposing the BFV signal into a second group of IMFs, determining dominant oscillatory frequencies in the first group of IMFs, automatically selecting a first characteristic IMF from the first group of IMFs that has its associated dominant oscillatory frequency in a predetermined frequency range, automatically selecting a second characteristic IMF from the second group of IMFs, calculating a time sequence of instantaneous phase difference between the first characteristic IMF and the second characteristic IMF, computing an average of the instantaneous phase difference in the time sequence, and identifying a pathological condition in the first individual.
    • 用于动态脑自动调节(CA)评估的方法包括从第一个体获取具有第一振荡模式的血压(BP)信号,从第一个体获取具有第二振荡模式的血流速度(BFV)信号,分解 BP信号转换成第一组固有模式函数(IMF),将BFV信号分解成第二组IMF,确定第一组IMF中的主要振荡频率,从具有第一组IMF的第一组IMF中自动选择第一特征IMF 其在预定频率范围内的相关主导振荡频率,自动从第二组IMF中选择第二特征IMF,计算第一特征IMF和第二特征IMF之间的瞬时相位差的时间序列,计算瞬时相位的平均值 时间序列差异,并鉴定病理状况 第一个人。
    • 10. 发明授权
    • Systems and methods for assessing dynamic cerebral autoregulation
    • 评估动态脑自动调节的系统和方法
    • US08211022B2
    • 2012-07-03
    • US12273386
    • 2008-11-18
    • Men-Tzung LoYanhui Liu
    • Men-Tzung LoYanhui Liu
    • A61B8/00A61B8/14A61B6/00
    • A61B8/06A61B5/02028A61B5/021A61B5/026A61B5/1455A61B5/4064A61B8/0808
    • A method for dynamic cerebral autoregulation (CA) assessment includes acquiring a blood pressure (BP) signal having a first oscillatory pattern from a first individual, acquiring a blood flow velocity (BFV) signal having a second oscillatory pattern from the first individual, decomposing the BP signal into a first group of intrinsic mode functions (IMFs), decomposing the BFV signal into a second group of IMFs, determining dominant oscillatory frequencies in the first group of IMFs, automatically selecting a first characteristic IMF from the first group of IMFs that has its associated dominant oscillatory frequency in a predetermined frequency range, automatically selecting a second characteristic IMF from the second group of IMFs, calculating a time sequence of instantaneous phase difference between the first characteristic IMF and the second characteristic IMF, computing an average of the instantaneous phase difference in the time sequence, and identifying a pathological condition in the first individual.
    • 用于动态脑自动调节(CA)评估的方法包括从第一个体获取具有第一振荡模式的血压(BP)信号,从第一个体获取具有第二振荡模式的血流速度(BFV)信号,分解 BP信号转换成第一组固有模式函数(IMF),将BFV信号分解成第二组IMF,确定第一组IMF中的主要振荡频率,从具有第一组IMF的第一组IMF中自动选择第一特征IMF 其在预定频率范围内的相关主导振荡频率,自动从第二组IMF中选择第二特征IMF,计算第一特征IMF和第二特征IMF之间的瞬时相位差的时间序列,计算瞬时相位的平均值 时间序列差异,并鉴定病理状况 第一个人。