会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Super-junction semiconductor device
    • 超结半导体器件
    • US06724042B2
    • 2004-04-20
    • US09781066
    • 2001-02-09
    • Yasuhiko OnishiTatsuhiko FujihiraKatsunori UenoSusumu IwamotoTakahiro SatoTatsuji Nagaoka
    • Yasuhiko OnishiTatsuhiko FujihiraKatsunori UenoSusumu IwamotoTakahiro SatoTatsuji Nagaoka
    • H01L2976
    • H01L29/7811H01L29/0619H01L29/0634H01L29/0696H01L29/66333H01L29/66712H01L29/7395H01L29/7802H01L2924/0002H01L2924/00
    • Disclosed is a semiconductor device facilitating a peripheral portion thereof with a breakdown voltage higher than the breakdown voltage in the drain drift layer without employing a guard ring or field plate. A preferred embodiment includes a drain drift region with a first alternating conductivity type layer formed of n drift current path regions and p partition regions arranged alternately with each other, and a breakdown withstanding region with a second alternating conductivity type layer formed of n regions and p regions arranged alternately with each other, the breakdown withstanding region providing no current path in the ON-state of the device and being depleted in the OFF-state of the device. Since depletion layers expand in both directions from multiple pn-junctions into n regions and p regions in the OFF-state of the device, the adjacent areas of p-type base regions, the outer area of the semiconductor chip and the deep area of the semiconductor chip are depleted. Thus, the breakdown voltage of breakdown withstanding region is higher than the breakdown voltage of drain drift region.
    • 公开了一种半导体器件,其使用其周边部分具有高于漏极漂移层中的击穿电压的击穿电压,而不采用保护环或场板。 优选实施例包括漏极漂移区,其具有由n个漂移电流通路区域和彼此交替布置的p个分隔区域形成的第一交变导电类型层,以及具有由n个区域和p形成的第二交变导电类型层的击穿承受区域 区域彼此交替布置,击穿承受区域在设备的接通状态下不提供电流路径,并且在器件的关断状态被耗尽。 由于耗尽层从多个pn结到两个方向扩展到设备的OFF状态的n个区域和p区域,所以p型基极区域的相邻区域,半导体芯片的外部区域和 半导体芯片耗尽。 因此,击穿耐受区域的击穿电压高于漏极漂移区域的击穿电压。
    • 2. 发明授权
    • Semiconductor device
    • 半导体器件
    • US06700141B2
    • 2004-03-02
    • US09978847
    • 2001-10-17
    • Susumu IwamotoTatsuhiko FujihiraKatsunori UenoYasuhiko OnishiTakahiro Sato
    • Susumu IwamotoTatsuhiko FujihiraKatsunori UenoYasuhiko OnishiTakahiro Sato
    • H01L2936
    • H01L29/7811H01L29/0634H01L29/7802
    • A reliable super-junction semiconductor device is provided that facilitates relaxing the tradeoff relation between the on-resistance and the breakdown voltage and improving the avalanche withstanding capability under an inductive load. The super-junction semiconductor device includes an active region including a thin first alternating conductivity type layer and a heavily doped n+-type intermediate drain layer between first alternating conductivity type layer and an n++-type drain layer, and a breakdown withstanding region including a thick second alternating conductivity type layer. Alternatively, active region includes a first alternating conductivity type layer and a third alternating conductivity type layer between first alternating conductivity type layer and n++-type drain layer, third alternating conductivity type layer being doped more heavily than first alternating conductivity type layer.
    • 提供了可靠的超结半导体器件,其有助于放松导通电阻和击穿电压之间的折衷关系,并提高在感性负载下的雪崩耐受能力。 超结半导体器件包括在第一交替导电型层和n ++类漏极层之间包括薄的第一交替导电型层和重掺杂n +型中间漏极层的有源区,以及 包括厚的第二交替导电类型层的击穿耐受区域。 或者,有源区包括第一交替导电类型层和第n +型漏极之间的第一交变导电类型层和第三交变导电类型层,第三交变导电类型层比第一交变导电类型层更重掺杂 。
    • 3. 发明授权
    • Super-junction semiconductor device
    • 超结半导体器件
    • US06677643B2
    • 2004-01-13
    • US09811727
    • 2001-03-19
    • Susumu IwamotoTatsuhiko FujihiraKatsunori UenoYasuhiko OnishiTakahiro Sato
    • Susumu IwamotoTatsuhiko FujihiraKatsunori UenoYasuhiko OnishiTakahiro Sato
    • H01L2976
    • H01L21/26513H01L21/266H01L29/0634H01L29/1095H01L29/7802
    • A super-junction semiconductor is provided that facilitates easy mass-production thereof, reducing the tradeoff relation between the on-resistance and the breakdown voltage, obtaining a high breakdown voltage and reducing the on-resistance to increase the current capacity thereof. The super-junction semiconductor device includes a semiconductor chip having a first major surface and a second major surface facing in opposite to the first major surface; a layer with low electrical resistance on the side of the second major surface; a first alternating conductivity type layer on low resistance layer, and a second alternating conductivity type layer on the first alternating conductivity type layer. The first alternating conductivity type layer including regions of a first conductivity type and regions of a second conductivity type arranged alternately with each other. The second alternating conductivity type layer including regions of the first conductivity type and regions of the second conductivity type arranged alternately with each other. The spacing between the pn-junctions in the second alternating conductivity type layer is wider than the spacing between the pn-junctions in the first alternating conductivity type layer.
    • 提供了一种能够容易地进行批量生产,降低导通电阻和击穿电压之间的折衷关系的超结半导体,获得高的击穿电压并降低导通电阻以增加其电流容量。 超结半导体器件包括具有第一主表面和面向第一主表面的第二主表面的半导体芯片; 在第二主表面侧具有低电阻的层; 低电阻层上的第一交替导电类型层和第一交变导电类型层上的第二交变导电类型层。 第一交变导电类型层包括彼此交替排列的第一导电类型的区域和第二导电类型的区域。 包括第一导电类型的区域和第二导电类型的区域的第二交替导电类型层彼此交替排列。 第二交变导电类型层中的pn结之间的间隔比第一交变导电类型层中的pn结之间的间隔宽。
    • 7. 发明授权
    • Method of manufacturing a super-junction semiconductor device with an conductivity type layer
    • 制造具有导电类型层的超结半导体器件的方法
    • US06475864B1
    • 2002-11-05
    • US09694098
    • 2000-10-23
    • Takahiro SatoKatsunori UenoTatsuhiko FujihiraKenji KuniharaYasuhiko OnishiSusumu Iwamoto
    • Takahiro SatoKatsunori UenoTatsuhiko FujihiraKenji KuniharaYasuhiko OnishiSusumu Iwamoto
    • H01L21336
    • H01L29/7802H01L29/0634H01L29/66712
    • A method of manufacturing reduces costs and provides an excellent mass-productivity, super-junction semiconductor device, which facilitates reducing times of heat treatment of the alternating conductivity type layer subjects, and preventing the characteristics of the alternating conductivity type layer from being impaired. A surface MOSFET structure, including p-type base regions, p+-type contact region in p-type base region, an n+-type source region in p-type base region, a gate electrode layer and a source electrode, is formed in the surface portion of an n-type semiconductor substrate through the usual double difflusion MOSFET manufacturing process. An oxide film is deposited by the CVD method on the back surface of the semiconductor substrate, a resist mask for defining p-type partition regions is formed on the oxide film, the oxide film is removed by ion etching, and trenches are dug. The p-type epitaxial layers are buried in the trenches by selective epitaxial growth, and the remaining oxide film is removed. The portions of n-type semiconductor substrate not etched off remain as n-type drift regions, resulting in an alternating conductivity type layer formed of n-type drift regions and p-type partition regions. A drain electrode is deposited on the back surface of alternating conductivity type layer.
    • 一种制造方法降低了成本,并且提供了优异的大规模生产率的超结半导体器件,其有助于减少交替导电型层对象的热处理时间,并且防止交替导电型层的特性受到损害。 在p型基极区中包括p型基极区域,p +型接触区域,p型基极区域中的n +型源极区域,栅极电极层和源极电极的表面MOSFET结构形成在 通过通常的双重扩散MOSFET制造工艺,n型半导体衬底的表面部分。 在半导体衬底的背面通过CVD法沉积氧化膜,在氧化物膜上形成用于限定p型分隔区的抗蚀剂掩模,通过离子蚀刻去除氧化膜,并且挖出沟槽。 通过选择性外延生长将p型外延层埋入沟槽中,并除去剩余的氧化物膜。 未被蚀刻的n型半导体衬底的部分保持为n型漂移区,导致由n型漂移区和p型分隔区形成的交变导电型层。 在交替导电型层的背面上沉积漏电极。
    • 9. 发明授权
    • Semiconductor device
    • 半导体器件
    • US06674126B2
    • 2004-01-06
    • US10073671
    • 2002-02-11
    • Susumu IwamotoTatsuhiko FujihiraKatsunori UenoYasuhiko OnishiTakahiro SatoTatsuji Nagaoka
    • Susumu IwamotoTatsuhiko FujihiraKatsunori UenoYasuhiko OnishiTakahiro SatoTatsuji Nagaoka
    • A01L29772
    • H01L29/7802H01L29/0634
    • A semiconductor device facilitates obtaining a higher breakdown voltage in the portion of the semiconductor chip around the drain drift region and improving the avalanche withstanding capability thereof. A vertical MOSFET according to the invention includes a drain layer; a drain drift region on drain layer, drain drift region including a first alternating conductivity type layer; a breakdown withstanding region (the peripheral region of the semiconductor chip) on drain layer and around drain drift region, breakdown withstanding region providing substantially no current path in the ON-state of the MOSFET, breakdown withstanding region being depleted in the OFF-state of the MOSFET, breakdown withstanding region including a second alternating conductivity type layer, and an under region below a gate pad, and the under region including a third alternating conductivity type layer.
    • 半导体器件有助于在漏极漂移区周围的半导体芯片的部分中获得更高的击穿电压并且提高其雪崩耐受能力。 根据本发明的垂直MOSFET包括漏极层; 漏极层上的漏极漂移区,包括第一交替导电型层的漏极漂移区; 在漏极层和漏极漂移区域周围的击穿耐受区域(半导体芯片的外围区域),在MOSFET的导通状态基本上不提供电流路径的击穿承受区域,击穿耐受区域在断开状态 MOSFET,包括第二交替导电类型层的击穿耐受区域和栅极焊盘下方的下部区域,以及包括第三交变导电类型层的下部区域。
    • 10. 发明授权
    • Semiconductor device and the method of manufacturing the same
    • 半导体器件及其制造方法
    • US06611021B1
    • 2003-08-26
    • US09693574
    • 2000-10-20
    • Yasuhiko OnishiTatsuhiko FujihiraSusumu IwamotoTakahiro Sato
    • Yasuhiko OnishiTatsuhiko FujihiraSusumu IwamotoTakahiro Sato
    • H01L2994
    • H01L29/7802H01L29/0634H01L29/0847H01L29/1095H01L29/66712
    • A semiconductor device includes an improved drain drift layer structure of alternating conductivity types, that is easy to manufacture, and that facilitates realizing a high current capacity and a high breakdown voltage and to provide a method of manufacturing the semiconductor device. The vertical MOSFET according to the invention includes an alternating-conductivity-type drain drift layer on an n+-type drain layer as a substrate. The alternating-conductivity-type drain drift layer is formed of n-type drift current path regions and p-type partition regions alternately arranged laterally with each other. The n-type drift current path regions and p-type partition regions extend in perpendicular to n+-type drain layer. Each p-type partition region is formed by vertically connecting p-type buried diffusion unit regions Up. The n-type drift current path regions are residual regions, left after connecting p-type buried diffusion unit regions Up, with the conductivity type thereof unchanged. The alternating-conductivity-type drain drift layer is formed by repeating the step of epitaxial layer growth and the step of implanting p-type impurity ions and by diffusing the impurity ions at once from the impurity sources located on multiple levels.
    • 半导体器件包括易于制造的交替导电类型的改进的漏极漂移层结构,并且有助于实现高电流容量和高击穿电压,并提供制造半导体器件的方法。 根据本发明的垂直MOSFET包括作为衬底的n +型漏极层上的交替导电型漏极漂移层。 交流导电型漏极漂移层由n型漂移电流路径区域和彼此交替布置的p型分隔区域形成。 n型漂移电流路径区域和p型分隔区域垂直于n +型漏极层延伸。 每个p型分隔区域通过垂直连接p型埋入扩散单元区域Up而形成。 n型漂移电流路径区域是在连接p型埋入扩散单元区域Up之后剩余的区域,其导电类型不变。 交替导电型漏极漂移层是通过重复外延层生长的步骤和注入p型杂质离子的步骤和通过从位于多个层上的杂质源一次扩散杂质离子而形成的。