会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • UNIFIED AUCTION MODEL FOR SUGGESTING RECOMMENDATION UNITS AND AD UNITS
    • 推荐建议单位和AD单位的统一拍卖模式
    • US20140019233A1
    • 2014-01-16
    • US13549080
    • 2012-07-13
    • Andrey GoderDavid YeYanxin ShiJohn Hegeman
    • Andrey GoderDavid YeYanxin ShiJohn Hegeman
    • G06Q30/02
    • A social networking system presents advertisements and recommendation units to its users. The recommendation units suggest actions for the users to increase their engagement with the social networking system or otherwise interact with other users, while the social networking system receives revenue from advertisers for displaying advertisements based on bid values associated with the advertisements. The social networking system determines values for the advertisements and for the recommendation units, where the values are measured in a comparable fashion. This allows the system to rank and select the advertisements and recommendation units together in a unified auction model. For example, the social networking system uses a pacing value to determine values of recommendation units having a common unit of measurement with expected values of advertisements to the social networking system.
    • 社交网络系统向用户展示广告和推荐单位。 推荐单元建议用户增加他们与社交网络系统的参与或者与其他用户交互的动作,而社交网络系统根据与广告相关联的出价值从广告商收到用于显示广告的收入。 社交网络系统确定广告和推荐单位的价值,其中值以可比较的方式测量。 这允许系统在统一的拍卖模型中对广告和推荐单元进行排名和选择。 例如,社交网络系统使用起搏值来确定具有与社交网络系统的广告的预期值的具有公共测量单位的推荐单元的值。
    • 3. 发明申请
    • Real-Time Online-Learning Object Recommendation Engine
    • 实时在线学习对象推荐引擎
    • US20130151539A1
    • 2013-06-13
    • US13313984
    • 2011-12-07
    • Yanxin ShiAndrey GoderDavid Ye
    • Yanxin ShiAndrey GoderDavid Ye
    • G06F17/30
    • G06F17/30867
    • In one embodiment, a system includes one or more computing systems that implement a social networking environment containing a large number of heterogeneous objects type, each of the plurality of object types having varying features, the system implementing a generic object recommendation engine for scoring objects and recommending the objects to users of the social networking system. In particular embodiments, the user and content object features are fed as inputs into a heuristic model that generates an expected value for the content object and user. In particular embodiments, the object recommendation engine includes an online learner that may log a user's actions after the initial impression to determine the relatively degree of interest to the user.
    • 在一个实施例中,系统包括实现包含大量异构对象类型的社交网络环境的一个或多个计算系统,所述多个对象类型中的每一个具有不同的特征,所述系统实现用于评分对象的通用对象推荐引擎, 向社交网络系统的用户推荐对象。 在特定实施例中,用户和内容对象特征作为输入被馈送到产生内容对象和用户的期望值的启发式模型中。 在特定实施例中,对象推荐引擎包括在线学习者,其可以在初始印象之后记录用户的动作以确定对用户的相对程度的兴趣。
    • 9. 发明申请
    • GENERATING CLUSTERS OF SIMILAR USERS FOR ADVERTISEMENT TARGETING
    • 生成用于广告目标的类似用户的群集
    • US20130124298A1
    • 2013-05-16
    • US13297117
    • 2011-11-15
    • Huajing LiYanxin ShiRohit DhawanRichard Bill SimRong YanDavid Dawei Ye
    • Huajing LiYanxin ShiRohit DhawanRichard Bill SimRong YanDavid Dawei Ye
    • G06Q30/02
    • G06Q30/0241
    • A social networking system may identify a first set of users as part of a training cluster and identify a second set of users that is similar to the first set of users for purposes of targeting advertisements related to the advertiser. Using past engagement history (e.g., click-through rates), demographic information, and keywords associated with the training cluster of users, a social networking system may generate a training model specific to the training cluster. Confidence scores may be used to identify similar users across the total population of users of the social networking system for creating a targeting cluster of users for the advertisement. A revenue sharing scheme may be used induce page administrators to increase their fan base by enabling advertisers to target advertisements to users that have expressed interest in pages associated with the page administrators.
    • 社交网络系统可以将第一组用户识别为训练集群的一部分,并且识别类似于第一组用户的第二组用户,用于定位与广告商相关的广告。 使用过去的参与历史(例如,点击率),人口统计信息和与用户的训练群组相关联的关键词,社交网络系统可以生成训练集群特有的训练模型。 置信度分数可用于识别社交网络系统的用户总数的类似用户,以创建用于广告的用户的目标群集。 可以使用收益分享计划,引导页面管理员通过使广告商能够将广告定向到对与页面管理员相关联的页面感兴趣的用户来增加他们的粉丝基础。