会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Video compression using adaptive variable length codes
    • 视频压缩采用自适应可变长度码
    • US08275045B2
    • 2012-09-25
    • US11743998
    • 2007-05-03
    • Yan YeYiliang Bao
    • Yan YeYiliang Bao
    • H04N7/12
    • H04N19/34H04N19/13H04N19/174H04N19/186H04N19/187
    • Adaptive variable length coding techniques may be used for entropy coding of residual block coefficients produced by predictive video coding. The techniques may be applied to schemes that code positions of nonzero transform coefficients using zero runs. Coding parameters such as end of block (EOB) shift and VLC codebook selection tables may be maintained as internal states, instead of sending them with coded video slice data. Table entries may be periodically updated based on statistics collected during a coding pass. A special EOB shift table may adapt the position of a special EOB symbol in a symbol set to probability of significant coefficients with magnitude greater than one for a coding condition, such as a coding cycle. Chroma blocks may be coded independently of luma blocks using separate EOB shift, special EOB shift, and VLC codebook selection tables.
    • 自适应可变长度编码技术可以用于由预测性视频编码产生的残差块系数的熵编码。 这些技术可以应用于使用零运行来编码非零变换系数的位置的方案。 可以将诸如块结束(EOB)移位和VLC码本选择表的编码参数保持为内部状态,而不是用编码的视频片段数据发送它们。 可以基于在编码过程期间收集的统计信息周期性地更新表格条目。 特殊的EOB移位表可以将符号集合中的特殊EOB符号的位置适应于诸如编码周期的编码条件的幅度大于1的有效系数的概率。 色度块可以使用独立的EOB移位,特殊EOB移位和VLC码本选择表独立于亮度块进行编码。
    • 2. 发明申请
    • VIDEO CODING WITH FINE GRANULARITY SPATIAL SCALABILITY
    • 视频编码具有细微的空间尺度
    • US20120201301A1
    • 2012-08-09
    • US13446864
    • 2012-04-13
    • Yiliang BaoYan Ye
    • Yiliang BaoYan Ye
    • H04N7/32H04N7/34
    • H04N19/34H04N19/105H04N19/159H04N19/33H04N19/59H04N19/61
    • The disclosure is directed to video coding techniques that support spatial scalability using a generalized fine granularity scalability (FGS) approach. Various degrees of spatial scalability can be achieved by sending spatially scalable enhancement layers in a generalized FGS format. Spatially scalable enhancement bitstreams can be arbitrarily truncated to conform to network conditions, channel conditions and/or decoder capabilities. Coding coefficients and syntax elements for spatial scalability can be embedded in a generalized FGS format. For good network or channel conditions, and/or enhanced decoder capabilities, additional bits received via one or more enhancement layers permit encoded video to be reconstructed with increased spatial resolution and continuously improved video quality across different spatial resolutions. The techniques permit spatial scalability layers to be coded as FGS layers, rather than discrete layers, permitting arbitrary scalability. The techniques may include features to curb error propagation that may otherwise arise due to partial decoding.
    • 本公开涉及使用广义细粒度可伸缩性(FGS)方法来支持空间可伸缩性的视频编码技术。 可以通过以广义的FGS格式发送空间可缩放的增强层来实现不同程度的空间可伸缩性。 空间可缩放的增强比特流可以被任意地截断以符合网络条件,信道条件和/或解码器能力。 用于空间可扩展性的编码系数和语法元素可以嵌入广义的FGS格式。 对于良好的网络或信道条件和/或增强的解码器能力,经由一个或多个增强层接收到的附加比特允许以增加的空间分辨率重建经过编码的视频并且跨越不同的空间分辨率连续改善视频质量。 这些技术允许空间可扩展性层被编码为FGS层,而不是离散层,允许任意的可扩展性。 这些技术可以包括抑制由于部分解码而可能出现的误差传播的特征。
    • 3. 发明申请
    • VIDEO COMPRESSION USING ADAPTIVE VARIABLE LENGTH CODES
    • 使用自适应长度代码进行视频压缩
    • US20080013633A1
    • 2008-01-17
    • US11743998
    • 2007-05-03
    • Yan YeYiliang Bao
    • Yan YeYiliang Bao
    • H04B1/66
    • H04N19/34H04N19/13H04N19/174H04N19/186H04N19/187
    • Adaptive variable length coding techniques may be used for entropy coding of residual block coefficients produced by predictive video coding. The techniques may be applied to schemes that code positions of nonzero transform coefficients using zero runs. Coding parameters such as end of block (EOB) shift and VLC codebook selection tables may be maintained as internal states, instead of sending them with coded video slice data. Table entries may be periodically updated based on statistics collected during a coding pass. A special EOB shift table may adapt the position of a special EOB symbol in a symbol set to probability of significant coefficients with magnitude greater than one for a coding condition, such as a coding cycle. Chroma blocks may be coded independently of luma blocks using separate EOB shift, special EOB shift, and VLC codebook selection tables.
    • 自适应可变长度编码技术可以用于由预测性视频编码产生的残差块系数的熵编码。 这些技术可以应用于使用零运行来编码非零变换系数的位置的方案。 可以将诸如块结束(EOB)移位和VLC码本选择表的编码参数保持为内部状态,而不是用编码的视频片段数据发送它们。 可以基于在编码过程期间收集的统计信息周期性地更新表条目。 特殊的EOB移位表可以将符号集合中的特殊EOB符号的位置适应于诸如编码周期的编码条件的幅度大于1的有效系数的概率。 色度块可以使用独立的EOB移位,特殊EOB移位和VLC码本选择表独立于亮度块进行编码。
    • 4. 发明授权
    • Video coding with fine granularity spatial scalability
    • 视频编码具有细粒度的空间可扩展性
    • US08315308B2
    • 2012-11-20
    • US11506348
    • 2006-08-18
    • Yiliang BaoYan Ye
    • Yiliang BaoYan Ye
    • H04N11/02
    • H04N19/34H04N19/105H04N19/159H04N19/33H04N19/59H04N19/61
    • The disclosure is directed to video coding techniques that support spatial scalability using a generalized fine granularity scalability (FGS) approach. Various degrees of spatial scalability can be achieved by sending spatially scalable enhancement layers in a generalized FGS format. Spatially scalable enhancement bitstreams can be arbitrarily truncated to conform to network conditions, channel conditions and/or decoder capabilities. Coding coefficients and syntax elements for spatial scalability can be embedded in a generalized FGS format. For good network or channel conditions, and/or enhanced decoder capabilities, additional bits received via one or more enhancement layers permit encoded video to be reconstructed with increased spatial resolution and continuously improved video quality across different spatial resolutions. The techniques permit spatial scalability layers to be coded as FGS layers, rather than discrete layers, permitting arbitrary scalability. The techniques may include features to curb error propagation that may otherwise arise due to partial decoding.
    • 本公开涉及使用广义细粒度可伸缩性(FGS)方法来支持空间可伸缩性的视频编码技术。 可以通过以广义的FGS格式发送空间可缩放的增强层来实现不同程度的空间可伸缩性。 空间可缩放的增强比特流可以被任意地截断以符合网络条件,信道条件和/或解码器能力。 用于空间可扩展性的编码系数和语法元素可以嵌入广义的FGS格式。 对于良好的网络或信道条件和/或增强的解码器能力,经由一个或多个增强层接收到的附加比特允许以增加的空间分辨率重建经过编码的视频并且跨越不同的空间分辨率连续改善视频质量。 这些技术允许空间可扩展性层被编码为FGS层,而不是离散层,允许任意的可扩展性。 这些技术可以包括抑制由于部分解码而可能出现的误差传播的特征。
    • 5. 发明申请
    • Methods and systems for refinement coefficient coding in video compression
    • 视频压缩中细化系数编码的方法和系统
    • US20070223580A1
    • 2007-09-27
    • US11502883
    • 2006-08-10
    • Yan YeYiliang Bao
    • Yan YeYiliang Bao
    • H04N7/12H04B1/66
    • H04N19/34H04N19/13H04N19/174H04N19/187H04N19/61
    • A method for coding refinement coefficients in a signal-to-noise ratio (SNR) scalable enhancement layer of a compressed video sequence is disclosed. A video sequence is received. A prediction of an original video signal in a current frame is constructed from the video sequence. A residual signal is formed by subtracting the prediction of the original video signal from the original video signal in the current frame. A transform is applied to the residual signal. A plurality of transform coefficients is quantized. A refinement coefficient is mapped to a ternary refinement symbol. Refinement symbols are grouped in a certain coding order. The refinement symbol groups are coded using variable length codes.
    • 公开了一种用于对压缩视频序列的信噪比(SNR)可缩放增强层中的细化系数进行编码的方法。 接收视频序列。 从视频序列构建当前帧中的原始视频信号的预测。 通过从当前帧中的原始视频信号中减去原始视频信号的预测来形成残差信号。 对残差信号进行变换。 量化多个变换系数。 细化系数映射到三进制细化符号。 细化符号按照一定的编码顺序分组。 细化符号组使用可变长度代码进行编码。
    • 6. 发明授权
    • Video coding with adaptive filtering for motion compensated prediction
    • 用于运动补偿预测的自适应滤波的视频编码
    • US09014280B2
    • 2015-04-21
    • US11869062
    • 2007-10-09
    • Yan YeYiliang Bao
    • Yan YeYiliang Bao
    • H04N19/523H04N19/176H04N19/172H04N19/46H04N19/61H04N19/117H04N19/14H04N19/174H04N19/187H04N19/82
    • H04N19/523H04N19/117H04N19/14H04N19/172H04N19/174H04N19/176H04N19/187H04N19/46H04N19/61H04N19/82
    • This disclosure is directed to video coding techniques that support normal single layer video coding, or scalable video coding with features such as signal-to-noise ratio (SNR) scalability and spatial scalability. A video coding device may implement these techniques in a video decoder that includes a motion compensation module and a filter. The motion compensation module decodes a prediction frame from a digital video signal, wherein the motion compensation module determines each block of the inter-coded frame from motion vectors encoded in the digital video signal. The filter adaptively filters one or more of the inter-coded blocks based on a signal either encoded or inferred from the digital video signal. In some instances, the video decoder may adaptively apply different filter functions, one in the horizontal and another in the vertical direction, based on the signal. By implementing these techniques, the video decoder may increase the visual quality of the resulting decoded digital video signal while reducing complexity.
    • 本公开涉及支持正常单层视频编码的视频编码技术或具有诸如信噪比(SNR)可缩放性和空间可伸缩性等特征的可缩放视频编码。 视频编码装置可以在包括运动补偿模块和滤波器的视频解码器中实现这些技术。 运动补偿模块从数字视频信号解码预测帧,其中,运动补偿模块根据在数字视频信号中编码的运动矢量来确定帧间编码帧的每个块。 滤波器基于从数字视频信号编码或推断的信号自适应地过滤一个或多个帧间编码块。 在一些情况下,视频解码器可以基于该信号自适应地应用不同的滤波器功能,一个在水平方向上,另一个在垂直方向。 通过实现这些技术,视频解码器可以增加所得到的解码数字视频信号的视觉质量,同时降低复杂性。
    • 8. 发明申请
    • Video coding with fine granularity spatial scalability
    • 视频编码具有细粒度的空间可扩展性
    • US20070160133A1
    • 2007-07-12
    • US11506348
    • 2006-08-18
    • Yiliang BaoYan Ye
    • Yiliang BaoYan Ye
    • H04B1/66H04N11/04
    • H04N19/34H04N19/105H04N19/159H04N19/33H04N19/59H04N19/61
    • The disclosure is directed to video coding techniques that support spatial scalability using a generalized fine granularity scalability (FGS) approach. Various degrees of spatial scalability can be achieved by sending spatially scalable enhancement layers in a generalized FGS format. Spatially scalable enhancement bitstreams can be arbitrarily truncated to conform to network conditions, channel conditions and/or decoder capabilities. Coding coefficients and syntax elements for spatial scalability can be embedded in a generalized FGS format. For good network or channel conditions, and/or enhanced decoder capabilities, additional bits received via one or more enhancement layers permit encoded video to be reconstructed with increased spatial resolution and continuously improved video quality across different spatial resolutions. The techniques permit spatial scalability layers to be coded as FGS layers, rather than discrete layers, permitting arbitrary scalability. The techniques may include features to curb error propagation that may otherwise arise due to partial decoding.
    • 本公开涉及使用广义细粒度可伸缩性(FGS)方法来支持空间可伸缩性的视频编码技术。 可以通过以广义的FGS格式发送空间可缩放的增强层来实现不同程度的空间可伸缩性。 空间可缩放的增强比特流可以被任意地截断以符合网络条件,信道条件和/或解码器能力。 用于空间可扩展性的编码系数和语法元素可以嵌入广义的FGS格式。 对于良好的网络或信道条件和/或增强的解码器能力,经由一个或多个增强层接收到的附加比特允许以增加的空间分辨率重建经过编码的视频并且跨越不同的空间分辨率连续改善视频质量。 这些技术允许空间可扩展性层被编码为FGS层,而不是离散层,允许任意的可扩展性。 这些技术可以包括抑制由于部分解码而可能出现的误差传播的特征。
    • 9. 发明授权
    • Video coding with fine granularity scalability using cycle-aligned fragments
    • 使用循环对齐片段的细粒度可扩展性的视频编码
    • US08233544B2
    • 2012-07-31
    • US11776679
    • 2007-07-12
    • Yiliang BaoNarendranath MalayathSharath ManjunathYan Ye
    • Yiliang BaoNarendranath MalayathSharath ManjunathYan Ye
    • H04N7/12H04N11/02
    • H04N19/34
    • The disclosure describes FGS video coding techniques that use cycle-aligned fragments (CAFs). The techniques may perform cycle-based coding of FGS video data block coefficients and syntax elements, and encapsulate cycles in fragments for transmission. The fragments may be cycle-aligned such that a start of a payload of each of the fragments substantially coincides with a start of one of the cycles. In this manner, cycles can be readily accessed via individual fragments. Some cycles may be controlled with a vector mode to scan to a predefined position within a block before moving to another block. In this manner, the number of cycles can be reduced, reducing the number of fragments and associated overhead. The CAFs may be entropy coded independently of one another so that each fragment may be readily accessed and decoded without waiting for decoding of other fragments. Independent entropy coding may permit parallel decoding and simultaneous processing of fragments.
    • 本公开描述了使用循环对准片段(CAF)的FGS视频编码技术。 这些技术可以执行FGS视频数据块系数和语法元素的基于循环的编码,并且将循环封装成用于传输的片段。 片段可以是循环对齐的,使得每个片段的有效载荷的开始基本上与循环中的一个的开始重合。 以这种方式,可以容易地通过各个片段访问周期。 可以通过向量模式来控制一些周期,以便在移动到另一个块之前扫描到块内的预定位置。 以这种方式,可以减少周期数,减少片段的数量和相关的开销。 CAF可以彼此独立地进行熵编码,使得每个片段可以容易地被访问和解码,而不等待其他片段的解码。 独立熵编码可以允许并行解码和片段的同时处理。
    • 10. 发明授权
    • Adaptive upsampling for scalable video coding
    • 可升级视频编码的自适应上采样
    • US08199812B2
    • 2012-06-12
    • US11970413
    • 2008-01-07
    • Yan YeYiliang Bao
    • Yan YeYiliang Bao
    • H04N11/02
    • H04N19/59H04N19/105H04N19/117H04N19/159H04N19/187H04N19/30H04N19/33
    • This disclosure describes techniques for coding information in a scalable video coding (SVC) scheme that supports spatial scalability. In one example, a method for coding video data with spatial scalability comprises upsampling base layer residual video data to a spatial resolution of enhancement layer residual video data, and coding the enhancement layer residual video data based on the upsampled base layer residual video data. In accordance with this disclosure, upsampling base layer residual video data includes interpolating values for one or more pixel locations of the upsampled base layer residual video data that correspond to locations between different base layer residual video data blocks.
    • 本公开描述了用于在支持空间可扩展性的可伸缩视频编码(SVC)方案中对信息进行编码的技术。 在一个示例中,一种用于以空间可缩放性对视频数据进行编码的方法包括将基本层残余视频数据上采样到增强层残余视频数据的空间分辨率,并且基于上采样的基本层残留视频数据对增强层残余视频数据进行编码。 根据本公开,上采样基层残留视频数据包括对应于不同基层残留视频数据块之间的位置的上采样基层残留视频数据的一个或多个像素位置的内插值。