会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • METHOD OF SEARCHING FOR KEY SEMICONDUCTOR OPERATION WITH RANDOMIZATION FOR WAFER POSITION
    • 搜索用于主要半导体操作的方法用于放置位置的随机化
    • US20110153660A1
    • 2011-06-23
    • US13040633
    • 2011-03-04
    • YIJ CHIEH CHUCHUN CHI CHENYUN-ZONG TIANCHENG-HAO CHEN
    • YIJ CHIEH CHUCHUN CHI CHENYUN-ZONG TIANCHENG-HAO CHEN
    • G06F17/30
    • G05B19/41875G05B2219/32221G05B2219/45031H01L22/20Y02P90/22
    • A method of searching for the key semiconductor operation with randomization for wafer position, comprising: recording the wafer position and the wafer yields of a plurality of wafer ID respectively corresponding to a plurality of semiconductor operations; establishing a matrix model which describes the matrix set for wafer yields of the plurality of wafer ID; analyzing the matrix model, further computing the matrix set for wafer yields of the wafer ID, thereby acquiring the weightings of the randomized wafer positions in such semiconductor operations; and searching for a key semiconductor operation among the plurality of semiconductor operations; herein, by using a local regression model to estimate the wafer position effect, computing the weighting of the position effect in each semiconductor operation based on the estimated position effect and the randomized wafer yield, higher weighting thereof indicates the key semiconductor operation having greater position effect in the aforementioned semiconductor process.
    • 一种用于晶片位置的随机化搜索密钥半导体操作的方法,包括:分别记录分别对应于多个半导体操作的多个晶片ID的晶片位置和晶片产量; 建立描述多个晶片ID的晶片产量的矩阵集合的矩阵模型; 分析矩阵模型,进一步计算晶片ID的晶片产量的矩阵集,从而在这种半导体操作中获得随机晶片位置的权重; 以及在所述多个半导体操作中搜索密钥半导体操作; 在本文中,通过使用局部回归模型来估计晶片位置效应,基于估计的位置效应和随机晶片产量计算每个半导体操作中的位置效应的加权,其较高的加权指示具有较大位置效应的关键半导体操作 在上述半导体工艺中。
    • 7. 发明申请
    • METHOD OF SEARCHING FOR KEY SEMICONDUCTOR OPERATION WITH RANDOMIZATION FOR WAFER POSITION
    • 搜索用于主要半导体操作的方法用于放置位置的随机化
    • US20100093114A1
    • 2010-04-15
    • US12330846
    • 2008-12-09
    • YIJ CHIEH CHUCHUN CHI CHENYUN-ZONG TIANCHENG-HAO CHEN
    • YIJ CHIEH CHUCHUN CHI CHENYUN-ZONG TIANCHENG-HAO CHEN
    • H01L21/02
    • G05B19/41875G05B2219/32221G05B2219/45031Y02P90/22
    • A method of searching for the key semiconductor operation with randomization for wafer position, comprising: recording the wafer position and the wafer yields of a plurality of wafer ID respectively corresponding to a plurality of semiconductor operations; establishing a matrix model which describes the matrix set for wafer yields of the plurality of wafer ID; analyzing the matrix model, further computing the matrix set for wafer yields of the wafer ID, thereby acquiring the weightings of the randomized wafer positions in such semiconductor operations; and searching for a key semiconductor operation among the plurality of semiconductor operations; herein, by using a local regression model to estimate the wafer position effect, computing the weighting of the position effect in each semiconductor operation based on the estimated position effect and the randomized wafer yield, higher weighting thereof indicates the key semiconductor operation having greater position effect in the aforementioned semiconductor process.
    • 一种用于晶片位置的随机化搜索密钥半导体操作的方法,包括:分别记录分别对应于多个半导体操作的多个晶片ID的晶片位置和晶片产量; 建立描述多个晶片ID的晶片产量的矩阵集合的矩阵模型; 分析矩阵模型,进一步计算晶片ID的晶片产量的矩阵集,从而在这种半导体操作中获得随机晶片位置的权重; 以及在所述多个半导体操作中搜索密钥半导体操作; 在本文中,通过使用局部回归模型来估计晶片位置效应,基于估计的位置效应和随机晶片产量计算每个半导体操作中的位置效应的加权,其较高的加权指示具有较大位置效应的关键半导体操作 在上述半导体工艺中。
    • 8. 发明申请
    • METHOD FOR DETECTING VARIANCE IN SEMICONDUCTOR PROCESSES
    • 用于检测半导体工艺中的变化的方法
    • US20110257932A1
    • 2011-10-20
    • US13170229
    • 2011-06-28
    • YIJ CHIEH CHUCHUN CHI CHENYUN-ZONG TIAN
    • YIJ CHIEH CHUCHUN CHI CHENYUN-ZONG TIAN
    • G06F19/00
    • G05B23/0221G05B2219/37224
    • A method of detecting variance by regression model has the following steps. Step 1 is preparing the FDC data and WAT data for analysis. Step 2 is figuring out what latent variable effect of WAT data by Factor Analysis Step 3 is utilizing Principal Component Analysis to reduce the number of FDC variables to a few independent principal components. Step 4 is demonstrating how the tools and FDC data affect WAT data by Analysis of covariance model, and constructing interrelationship among FDC, WAT and tools. The interrelationship can point out which parameter effect WAT significantly. By the method, when WAT abnormal situation happened, it is easier for engineers to trace where the problem is.
    • 通过回归模型检测方差的方法具有以下步骤。 步骤1正在准备FDC数据和WAT数据进行分析。 第2步是通过因子分析步骤3来确定WAT数据的潜在变量效应是否利用主成分分析将FDC变量的数量减少到少数独立的主成分。 第4步演示了工具和FDC数据如何通过分析协方差模型影响WAT数据,并构建FDC,WAT和工具之间的相互关系。 相互关系可以显着地指出哪个参数效应WAT。 通过这种方法,当WAT异常情况发生时,工程师更容易追踪问题的位置。
    • 10. 发明申请
    • METHOD AND SYSTEM OF COMPRESSING RAW FABRICATION DATA FOR FAULT DETERMINATION
    • 压缩原始制造数据进行故障确定的方法和系统
    • US20120331357A1
    • 2012-12-27
    • US13240305
    • 2011-09-22
    • YIJ CHIEH CHUYUN-ZONG TIAN
    • YIJ CHIEH CHUYUN-ZONG TIAN
    • G06F11/00
    • G05B23/0254G06F11/0754G06F11/3013G06F11/3082
    • The instant disclosure relates to a raw data compression method for the fabrication process. The method includes the steps of: inputting into a signal converter a collection of raw data points representing operational parameter of a semiconductor equipment within a predetermined time period; obtaining an approximation of the raw data points with a Fourier series; computing the Fourier coefficients and the residuals between the raw data points and the corresponding predicted values predicted by the Fourier series; determining if the residuals exceed an error threshold; recording and storing the Fourier coefficients as the compressed data if none of the residuals exceeds the error threshold; and recording the raw data point as abnormal data point if the corresponding residual exceeds the error threshold before recording and storing the Fourier coefficients and the abnormal data point as the compressed data.
    • 本公开涉及用于制造过程的原始数据压缩方法。 该方法包括以下步骤:在预定时间段内向信号转换器输入表示半导体设备的操作参数的原始数据点的集合; 用傅里叶级数获得原始数据点的近似值; 计算傅里叶系数和原始数据点之间的残差与由傅立叶级数预测的对应预测值; 确定残差是否超过误差阈值; 如果没有残差超过误差阈值,则将傅立叶系数作为压缩数据进行记录和存储; 并且如果在记录和存储傅立叶系数和异常数据点作为压缩数据之前相应的残差超过误差阈值,则将原始数据点记录为异常数据点。