会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明授权
    • Pairwise feature learning with boosting for use in face detection
    • 配对功能学习与增强用于面部检测
    • US07844085B2
    • 2010-11-30
    • US11759460
    • 2007-06-07
    • Juwei LuHui Zhou
    • Juwei LuHui Zhou
    • G06K9/00
    • G06K9/00228G06K9/6257
    • Systems and methods for training an AdaBoost based classifier for detecting symmetric objects, such as human faces, in a digital image. In one example embodiment, such a method includes first selecting a sub-window of a digital image. Next, the AdaBoost based classifier extracts multiple sets of two symmetric scalar features from the sub-window, one being in the right half side and one being in the left half side of the sub-window. Then, the AdaBoost based classifier minimizes the joint error of the two symmetric features for each set of two symmetric scalar features. Next, the AdaBoost based classifier selects one of the features from the set of two symmetric scalar features for each set of two symmetric scalar features. Finally, the AdaBoost based classifier linearly combines multiple weak classifiers, each of which corresponds to one of the selected features, into a stronger classifier.
    • 用于训练基于AdaBoost的分类器的系统和方法,用于在数字图像中检测对象对象(例如人脸)。 在一个示例实施例中,这种方法包括首先选择数字图像的子窗口。 接下来,基于AdaBoost的分类器从子窗口中提取多组两个对称标量特征,一组位于子窗口的右半边,一个位于子窗口的左半边。 然后,基于AdaBoost的分类器最小化两组对称标量特征的两个对称特征的联合误差。 接下来,基于AdaBoost的分类器从两组对称标量特征中选择两个对称标量特征集合中的一个特征。 最后,基于AdaBoost的分类器将多个弱分类器线性组合,每个弱分类器对应于所选特征之一,成为更强的分类器。