会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • System and method for building decision tree classifiers using bitmap techniques
    • 使用位图技术构建决策树分类器的系统和方法
    • US20070192341A1
    • 2007-08-16
    • US11344193
    • 2006-02-01
    • Shiby ThomasWei LiJoseph YarmusMahesh JagannathAri Mozes
    • Shiby ThomasWei LiJoseph YarmusMahesh JagannathAri Mozes
    • G06F7/00
    • G06F17/30545Y10S707/99933Y10S707/99945
    • A method, system, and computer program product for counting predictor-target pairs for a decision tree model provides the capability to generate count tables that is quicker and more efficient than previous techniques. A method of counting predictor-target pairs for a decision tree model, the decision tree model based on data stored in a database, the data comprising a plurality of rows of data, at least one predictor and at least one target, comprises generating a bitmap for each split node of data stored in a database system by intersecting a parent node bitmap and a bitmap of a predictor that satisfies a condition of the node, intersecting each split node bitmap with each predictor bitmap and with each target bitmap to form intersected bitmaps, and counting bits of each intersected bitmap to generate a count of predictor-target pairs.
    • 用于计算决策树模型的预测器 - 目标对的方法,系统和计算机程序产品提供了生成比先前技术更快更有效的计数表的能力。 一种对决策树模型计算预测器 - 目标对的方法,基于存储在数据库中的数据的决策树模型,包括多行数据的数据,至少一个预测器和至少一个目标,包括生成位图 通过将父节点位图和满足该节点的条件的预测器的位图相交到数据库系统中存储的数据的每个分割节点,将每个分割节点位图与每个预测器位图相交,并与每个目标位图形成相交的位图, 并计数每个相交位图的位以产生预测器 - 目标对的计数。
    • 3. 发明授权
    • System and method for building decision tree classifiers using bitmap techniques
    • 使用位图技术构建决策树分类器的系统和方法
    • US07571159B2
    • 2009-08-04
    • US11344193
    • 2006-02-01
    • Shiby ThomasWei LiJoseph YarmusMahesh JagannathAri W. Mozes
    • Shiby ThomasWei LiJoseph YarmusMahesh JagannathAri W. Mozes
    • G06F7/00G06F17/30G06F17/00
    • G06F17/30545Y10S707/99933Y10S707/99945
    • A method, system, and computer program product for counting predictor-target pairs for a decision tree model provides the capability to generate count tables that is quicker and more efficient than previous techniques. A method of counting predictor-target pairs for a decision tree model, the decision tree model based on data stored in a database, the data comprising a plurality of rows of data, at least one predictor and at least one target, comprises generating a bitmap for each split node of data stored in a database system by intersecting a parent node bitmap and a bitmap of a predictor that satisfies a condition of the node, intersecting each split node bitmap with each predictor bitmap and with each target bitmap to form intersected bitmaps, and counting bits of each intersected bitmap to generate a count of predictor-target pairs.
    • 用于计算决策树模型的预测器 - 目标对的方法,系统和计算机程序产品提供了生成比先前技术更快更有效的计数表的能力。 一种对决策树模型计算预测器 - 目标对的方法,基于存储在数据库中的数据的决策树模型,包括多行数据的数据,至少一个预测器和至少一个目标,包括生成位图 通过将父节点位图和满足该节点的条件的预测器的位图相交到数据库系统中存储的数据的每个分割节点,将每个分割节点位图与每个预测器位图相交,并与每个目标位图形成相交的位图, 并计数每个相交位图的位以产生预测器 - 目标对的计数。
    • 6. 发明申请
    • Binning predictors using per-predictor trees and MDL pruning
    • 使用每预测树和MDL修剪的binning预测变量
    • US20070185896A1
    • 2007-08-09
    • US11344185
    • 2006-02-01
    • Mahesh JagannathChitra BhagwatJoseph YarmusAri Mozes
    • Mahesh JagannathChitra BhagwatJoseph YarmusAri Mozes
    • G06F7/00
    • G06K9/6282
    • Binning of predictor values used for generating a data mining model provides useful reduction in memory footprint and computation during the computationally dominant decision tree build phase, but reduces the information loss of the model and reduces the introduction of false information artifacts. A method of binning data in a database for data mining modeling in a database system, the data stored in a database table in the database system, the data mining modeling having selected at least one predictor and one target for the data, the data including a plurality of values of the predictor and a plurality of values of the target, the method comprises constructing a binary tree for the predictor that splits the values of the predictor into a plurality of portions, pruning the binary tree, and defining as bins of the predictor leaves of the tree that remain after pruning, each leaf of the tree representing a portion of the values of the predictor.
    • 用于生成数据挖掘模型的预测值的分组在计算主导的决策树构建阶段提供了有用的减少内存占用和计算,但减少了模型的信息丢失并减少了虚假信息工件的引入。 一种在数据库中对数据进行数据挖掘建模的方法,数据库系统中存储的数据库中存储的数据,数据挖掘建模已经为数据选择了至少一个预测因子和一个目标,数据包括 所述预测器的多个值和所述目标的多个值,所述方法包括为所述预测器构建二叉树,所述预测器将所述预测器的值分割成多个部分,修剪所述二叉树,并且将所述二叉树定义为所述预测器 修剪后保留的树的叶子,树的每个叶表示预测值的一部分值。
    • 8. 发明授权
    • Binning predictors using per-predictor trees and MDL pruning
    • 使用每预测树和MDL修剪的binning预测变量
    • US08280915B2
    • 2012-10-02
    • US11344185
    • 2006-02-01
    • Mahesh JagannathChitra BhagwatJoseph YarmusAri W. Mozes
    • Mahesh JagannathChitra BhagwatJoseph YarmusAri W. Mozes
    • G06F7/00G06F17/30
    • G06K9/6282
    • Binning of predictor values used for generating a data mining model provides useful reduction in memory footprint and computation during the computationally dominant decision tree build phase, but reduces the information loss of the model and reduces the introduction of false information artifacts. A method of binning data in a database for data mining modeling in a database system, the data stored in a database table in the database system, the data mining modeling having selected at least one predictor and one target for the data, the data including a plurality of values of the predictor and a plurality of values of the target, the method comprises constructing a binary tree for the predictor that splits the values of the predictor into a plurality of portions, pruning the binary tree, and defining as bins of the predictor leaves of the tree that remain after pruning, each leaf of the tree representing a portion of the values of the predictor.
    • 用于生成数据挖掘模型的预测值的分组在计算主导的决策树构建阶段提供了有用的减少内存占用和计算,但减少了模型的信息丢失并减少了虚假信息工件的引入。 一种在数据库中对数据进行数据挖掘建模的方法,数据库系统中存储的数据库中存储的数据,数据挖掘建模已经为数据选择了至少一个预测因子和一个目标,数据包括 所述预测器的多个值和所述目标的多个值,所述方法包括为所述预测器构建二叉树,所述预测器将所述预测器的值分割成多个部分,修剪所述二叉树,并且将所述二叉树定义为所述预测器 修剪后保留的树的叶子,树的每个叶表示预测值的一部分值。