会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Method for fabricating high performance metal-insulator-metal capacitor (MIMCAP)
    • 制造高性能金属绝缘体金属电容器(MIMCAP)的方法
    • US20070173029A1
    • 2007-07-26
    • US11340340
    • 2006-01-26
    • Wagdi AbadeerJack MandelmanCarl RadensWilliam Tonti
    • Wagdi AbadeerJack MandelmanCarl RadensWilliam Tonti
    • H01L21/20
    • H01L28/60
    • A method of fabricating a high performance metal-insulator-metal capacitor (MIMCAP) includes providing a first inter-level dielectric (ILD) layer over an isolation region; forming a MIMCAP pattern in the first ILD layer over the isolation region; depositing a conformal conductive liner over the MIMCAP pattern and the first ILD layer; depositing an insulator over the conformal conductive liner; forming a contact pattern through the conformal conductive liner, the insulator and the first inter-level dielectric (ILD) layer; depositing a second conformal conductive liner over the MIMCAP pattern, the contact pattern and the first ILD layer; and depositing a conductive stud over the second conformal conductive liner in the MIMCAP pattern and the contact pattern. The method is applicable to both a conventional bulk semiconductor substrate and a silicon-on-insulator (SOI) substrate.
    • 一种制造高性能金属 - 绝缘体 - 金属电容器(MIMCAP)的方法包括在隔离区域上提供第一级间电介质层(ILD)层; 在隔离区域上的第一ILD层中形成MIMCAP图案; 在MIMCAP图案和第一ILD层上沉积共形导电衬垫; 在保形导电衬垫上沉积绝缘体; 通过所述共形导电衬垫,所述绝缘体和所述第一层间电介质层(ILD)层形成接触图案; 在MIMCAP图案,接触图案和第一ILD层上沉积第二共形导电衬垫; 以及在MIMCAP图案和接触图案中的第二共形导电衬垫上沉积导电柱。 该方法适用于常规体半导体衬底和绝缘体上硅(SOI)衬底。
    • 4. 发明申请
    • SELF-TEST CIRCUITRY TO DETERMINE MINIMUM OPERATING VOLTAGE
    • 自检电路确定最小工作电压
    • US20060259840A1
    • 2006-11-16
    • US10908452
    • 2005-05-12
    • Wagdi AbadeerGeorge BracerasAnthony BonaccioKevin Gorman
    • Wagdi AbadeerGeorge BracerasAnthony BonaccioKevin Gorman
    • G01R31/28
    • G01R31/3004
    • A solution for determining minimum operating voltages due to performance/power requirements would be valid for a wide range of actual uses. The solution includes a test flow methodology for dynamically reducing power consumption under applied conditions while maintaining application performance via a BIST circuit. There is additionally provided a test flow method for dynamically reducing power consumption to the lowest possible stand-by/very low power level under applied conditions that will still be sufficient to maintain data/state information. One possible application would be for controlling the voltage supply to a group of particular circuits on an ASIC (Application Specific Integrated Circuit). These circuits are grouped together in a voltage island where they would receive a voltage supply that can be different from the voltage supply other circuits on the same chip are receiving. The same solution could be applied to a portion of a microprocessor (the cache logic control, for example).
    • 用于确定由于性能/功率要求而导致的最小工作电压的解决方案对于广泛的实际应用是有效的。 该解决方案包括测试流程方法,用于在应用条件下动态降低功耗,同时通过BIST电路保持应用性能。 另外提供了一种测试流程方法,用于在仍然足以维护数据/状态信息的应用条件下将功耗动态地降低到最低可能待机/极低功率水平。 一种可能的应用是用于控制对ASIC(专用集成电路)上的一组特定电路的电压供应。 这些电路分组在一个电压岛中,在那里它们将接收可以与同一芯片正在接收的其它电路的电压供给不同的电压源。 相同的解决方案可以应用于微处理器的一部分(例如,高速缓存逻辑控制)。
    • 9. 发明申请
    • Electronically programmable antifuse and circuits made therewith
    • 电子可编程反熔丝和由其制成的电路
    • US20050133884A1
    • 2005-06-23
    • US11051703
    • 2005-02-04
    • John FifieldWagdi AbadeerWilliam Tonti
    • John FifieldWagdi AbadeerWilliam Tonti
    • H01L23/525H01L29/00
    • H01L23/5252H01L2924/0002H01L2924/3011H01L2924/00
    • An antifuse device (120) that includes a bias element (124) and an programmable antifuse element (128) arranged in series with one another so as to form a voltage divider having an output node (F) located between the bias and antifuse elements. When the antifuse device is in its unprogrammed state, each of the bias element and antifuse element is non-conductive. When the antifuse device is in its programmed state, the bias element remains non-conductive, but the antifuse element is conductive. The difference in the resistance of the antifuse element between its unprogrammed state and programmed state causes the difference in voltages seen at the output node to be on the order of hundreds of mili-volts when a voltage of 1 V is applied across the antifuse device. This voltage difference is so high that it can be readily sensed using a simple sensing circuit (228).
    • 一种反熔丝装置(120),其包括彼此串联布置的偏置元件(124)和可编程反熔丝元件(128),以形成具有位于偏置和反熔丝元件之间的输出节点(F)的分压器。 当反熔丝装置处于其未编程状态时,偏置元件和反熔丝元件中的每一个都是不导电的。 当反熔丝装置处于其编程状态时,偏置元件保持不导电,但是反熔丝元件是导电的。 反熔丝元件在其未编程状态和编程状态之间的电阻差异导致当在反熔断器件上施加1V的电压时,在输出节点处看到的电压差为几百微升。 该电压差非常高以至于可以使用简单的感测电路(228)容易地感测。