会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Bis-homophthalimides and salts thereof
    • 双 - 高邻苯二甲酰亚胺及其盐
    • US4031219A
    • 1977-06-21
    • US704844
    • 1976-07-13
    • Eberhard KutterVolkhard AustelWolfgang EberleinJoachim HeiderWalter KobingerChristian LillieRudolf Kadatz
    • Eberhard KutterVolkhard AustelWolfgang EberleinJoachim HeiderWalter KobingerChristian LillieRudolf Kadatz
    • A61K31/47A61K31/472A61P9/06C07D217/24C07D221/22
    • C07D217/24Y10S514/821
    • Compounds of the formula ##STR1## wherein A and B, which may be identical to or different from each other, are each straight alkylene of 2 to 4 carbon atoms which may have a methyl or phenyl substituent attached thereto,R.sub.1, r.sub.2, r.sub.3 and R.sub.4, which may be identical to or different from each other, are each hydrogen, fluorine, chlorine, bromine, hydroxyl, amino, nitro, acetylamino, alkyl of 1 to 3 carbon atoms, alkoxy of 1 to 3 carbon atoms or (alkyl of 1 to 3 carbon atoms)thio,R.sub.5, r.sub.6, r.sub.7 and R.sub.8, which may be identical to or different from each other, are each hydrogen, alkyl of 1 to 4 carbon atoms, phenyl-(alkyl of 1 to 4 carbon atoms) or methoxyphenyl-(alkyl of 1 to 4 carbon atoms), orR.sub.5 and R.sub.6, together with each other, are straight alkylene of 2 to 5 carbon atoms, orR.sub.7 and R.sub.8, together with each other, are straight alkylene of 2 to 5 carbon atoms, andR.sub.9 is hydrogen, alkyl of 1 to 6 carbon atoms or phenyl-(alkyl of 1 to 6 carbon atoms),And non-toxic, pharmaceutically acceptable acid addition salts thereof; the compounds as well as the salts are useful as antiarrhythmics.
    • 其中A和B可以彼此相同或不同的化合物是可以具有连接到其上的甲基或苯基取代基的2至4个碳原子的直链亚烷基,R 1,R 2,R 3和 R 4可以相同或不同,分别为氢,氟,氯,溴,羟基,氨基,硝基,乙酰氨基,1〜3个碳原子的烷基,1〜3个碳原子的烷氧基或( 1至3个碳原子)硫代,R 5,R 6,R 7和R 8可彼此相同或不同,分别为氢,1至4个碳原子的烷基,苯基 - (1至4个碳原子的烷基) 或甲氧基苯基 - (1至4个碳原子的烷基)或R 5和R 6彼此一起是2至5个碳原子的直链亚烷基,或者R 7和R 8彼此一起是2至5个直链亚烷基 碳原子,并且R 9为氢,1至6个碳原子的烷基或苯基 - (1至6个碳原子的烷基),和非毒性,药学上可接受的酸 附加费用 化合物作为反应物可用作生物反应器。
    • 6. 发明授权
    • Pyridazinone-substituted benzimidazoles and salts
    • 哒嗪酮取代的苯并咪唑和盐
    • US4361563A
    • 1982-11-30
    • US259537
    • 1981-05-01
    • Volkhard AustelJoachim HeiderWolfgang EberleinWilli DiederenWalter Haarmann
    • Volkhard AustelJoachim HeiderWolfgang EberleinWilli DiederenWalter Haarmann
    • A61K31/50C07D235/18C07D237/04C07D403/04
    • C07D237/04A61K31/50C07D235/18Y10S514/822
    • Compounds of the formula ##STR1## wherein R.sub.1 is hydrogen; trifluoromethyl; alkyl of 1 to 11 carbon atoms; cycloalkyl of 3 to 7 carbon atoms; hydroxyl; alkoxy of 1 to 6 carbon atoms; mercapto; (alkyl of 1 to 6 carbon atoms)-mercapto; phenyl-(alkyl of 1 to 3 carbon atoms); phenyl; or mono-, di- or tri-substituted phenyl, where the substituents, which may be identical to or different from each other, are each halogen, alkyl of 1 to 4 carbon atoms, (alkyl of 1 to 6 carbon atoms)-sulfinyl, hydroxyl, alkoxy of 1 to 6 carbon atoms, mercapto or (alkyl of 1 to 6 carbon atoms)-mercapto;R.sub.2 is hydrogen, alkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or phenyl-(alkyl of 1 to 3 carbon atoms); andR.sub.3 is alkyl of 1 to 6 carbon atoms; optically active antipodes thereof; and non-toxic, pharmaceutically acceptable acid addition salts of said compounds or of said optically active antiposed. The compounds are useful as cardiotonics and antithrombotics.
    • 其中R 1是氢的式IMAMA的化合物; 三氟甲基 1至11个碳原子的烷基; 3至7个碳原子的环烷基; 羟; 1至6个碳原子的烷氧基; 巯基 (1-6个碳原子的烷基) - 巯基; 苯基 - (1至3个碳原子的烷基); 苯基; 或单取代,二取代或三取代的苯基,其中可以相同或不同的取代基各自为卤素,具有1至4个碳原子的烷基,(1至6个碳原子的烷基) - 亚磺酰基 ,羟基,1至6个碳原子的烷氧基,巯基或(1至6个碳原子的烷基) - 巯基; R2是氢,1至6个碳原子的烷基,3至6个碳原子的环烷基或苯基 - (1至3个碳原子的烷基); 且R 3为1至6个碳原子的烷基; 光学活性对映体; 和所述化合物或所述光学活性药物的无毒的药学上可接受的酸加成盐。 这些化合物可用作强心剂和抗血栓药物。
    • 7. 发明授权
    • Phenylalkylamino-alkyl derivatives of quinazolinone and phthalazinone
    • 喹唑啉酮和酞嗪酮的苯基烷基氨基 - 烷基衍生物
    • US4134980A
    • 1979-01-16
    • US827142
    • 1977-08-24
    • Wolfgang EberleinVolkhard AustelJoachim HeiderJurgen DammgenRudolf KadatzChristian LillieWalter Kobinger
    • Wolfgang EberleinVolkhard AustelJoachim HeiderJurgen DammgenRudolf KadatzChristian LillieWalter Kobinger
    • C07D239/91A61K31/50A61K31/502A61K31/505A61K31/517A61P9/06A61P9/12B01J23/00C07D237/00C07D237/32C07D239/88C07D239/90C07D317/00C07D319/00C07D405/12C07D491/04C07D491/056C07D239/72
    • C07D491/04C07D237/32C07D239/90
    • Compounds of the formula ##STR1## wherein A is ##STR2## where R.sub.1 is hydrogen or alkyl of 1 to 3 carbon atoms; R.sub.2 is alkoxy of 1 to 3 carbon atoms;R.sub.3 is alkoxy of 1 to 3 carbon atoms or, together with R.sub.2, methylenedioxy or ethylenedioxy;R.sub.4 is hydrogen, alkyl of 1 to 3 carbon atoms or benzyl;R.sub.5 is hydrogen or alkyl of 1 to 3 carbon atoms;R.sub.6 is hydrogen or alkoxy of 1 to 3 carbon atoms;R.sub.7 is alkoxy of 1 to 3 carbon atoms or, together with R.sub.6, methylenedioxy or ethylenedioxy; andN is 2 or 3;And non-toxic, pharmacologically acceptable acid addition salts thereof; the compounds as well as their salts are useful as heart rate reducers and mild antihypertensives.This invention relates to novel N-(phenylalkylaminoalkyl)-substituted quinazolinones and phthalazinones and nontoxic acid addition salts thereof, as well as to various methods of preparing these compounds.More particularly, the present invention relates to a novel class of N-substituted quinazolinones and phthalazinones represented by the formula ##STR3## wherein A is ##STR4## where R.sub.1 is hydrogen or alkyl of 1 to 3 carbon atoms; R.sub.2 is alkoxy of 1 to 3 carbon atoms;R.sub.3 is alkoxy of 1 to 3 carbon atoms or, together with R.sub.2, methylenedioxy or ethylenedioxy;R.sub.4 is hydrogen, alkyl of 1 to 3 carbon atoms or benzyl;R.sub.5 is hydrogen or alkyl of 1 to 3 carbon atoms;R.sub.6 is hydrogen or alkoxy of 1 to 3 carbon atoms;R.sub.7 is alkoxy of 1 to 3 carbon atoms or, together with R.sub.6, methylenedioxy or ethylenedioxy; andN is 2 or 3;Or a non-toxic, pharmacologically acceptable acid addition salt thereof.A preferred sub-genus thereunder is constituted by compounds of the formula I whereR.sub.1 and R.sub.5 are each hydrogen, methyl, ethyl, n-propyl or isopropyl;R.sub.4 is hydrogen, methyl, ethyl, n-propyl, isopropyl or benzyl;R.sub.2, r.sub.3 and R.sub.7 are each methoxy, ethoxy, n-propoxy or isopropoxy;R.sub.6 is hydrogen, methoxy, ethoxy, n-propoxy or isopropoxy;R.sub.2 and R.sub.3, together with each other, are methylenedioxy or ethylenedioxy;R.sub.6 and R.sub.7, together with each other, are methylenedioxy or ethylenedioxy; andn is 2 or 3;and non-toxic, pharmacologically acceptable acid addition salts thereof.A further, especially preferred sub-genus thereunder is constituted by compounds of the formula I whereR.sub.2 and R.sub.3 are methoxy in the 6- and 7-position, respectively, or, together with each other, methylenedioxy or ethylenedioxy;R.sub.4 is hydrogen or methyl;R.sub.5 is hydrogen;R.sub.6 is hydrogen or methoxy in the 3-position;R.sub.7 is methoxy in the 4-position or, together with R.sub.6, methylenedioxy or ethylenedioxy; andn is 2 or 3;and non-toxic, pharmacologically acceptable acid addition salts thereof.The compounds embraced by formula I may be prepared by the following methods:Method ABy reacting a compound of the formula ##STR5## wherein R.sub.2, R.sub.3, A and n have the same meanings as in formula I, andZ is a leaving-group, such as chlorine, bromine, iodine, alkylsulfonyloxy or arylsulfonyloxy,with a phenylalkylamine of the formula ##STR6## wherein R.sub.4, R.sub.5, R.sub.6 and R.sub.7 have the same meanings as in formula I.The reaction is carried out in an inert solvent, such as ether, tetrahydrofuran, methylformamide, dimethylformamide, dimethylsulfoxide, chlorobenzene or benzene, and depending upon the reactivity of substituent Z, at a temperature between -50 and +250.degree. C, but preferably at the boiling point of the particular solvent which is used. The presence of an acid-binding agent, such as an alkali metal alcoholate, an alkali metal hydroxide, an alkali metal carbonate, especially potassium carbonate, or a tertiary organic base, particularly triethylamine or pyridine, or of a reaction accelerator, such as potassium iodide, is of advantage.Method BBy reacting a compound of the formula ##STR7## wherein A, R.sub.2 and R.sub.3 have the same meanings as in formula I, with a phenylalkylamine of the formula ##STR8## wherein R.sub.4, R.sub.5, R.sub.6 and n have the same meanings as in formula I, andZ has the same meanings as in formula II.The reaction is carried out in an inert solvent, such as acetone, dimethylformamide, dimethylsulfoxide or chlorobenzene, and, depending upon the reactivity of substituent Z, at a temperature between 0 and 150.degree. C, but preferably at the boiling point of the particular solvent which is used. The presence of an acid-binding agent, such as an alkali metal alcoholate, an alkali metal hydroxide, an alkali metal carbonate, especially potassium carbonate, an alkali metal amide or a tertiary organic base, particularly triethylamine or pyridine, or of a reaction accelerator, such as potassium iodide, is of advantage.Method CBy reacting an aldehyde of the formula ##STR9## wherein R.sub.2, R.sub.3, A and n have the same meanings as in formula I, or an acetal thereof, with an amine of the formula III in the presence of catalytically activated hydrogen.The reductive amination is carried out with hydrogen in the presence of a hydrogenation catalyst, such as palladized charcoal, at a hydrogen pressure of 5 atmospheres, in a solvent, such as methanol, ethanol or dioxane, and at a temperature between 0 and 100.degree. C, but preferably between 20 and 80.degree. C.Method DBy reacting an amine of the formula ##STR10## wherein R.sub.2, R.sub.3, R.sub.4, A and n have the same meanings as in formula I, with a phenylalkyl compound of the formula ##STR11## wherein R.sub.5, R.sub.6 and R.sub.7 have the same meanings as in formula I, andZ has the same meanings as in formula II.The reaction is carried out in an inert solvent, such as acetone, methylene chloride, dimethylformamide, dimethylsulfoxide or chlorobenzene, and, depending upon the reactivity of substituent Z, at a temperature between 0 and 150.degree. C, but preferably at the boiling point of the particular solvent which is used. The presence of an acid-binding agent, such as an alkali metal alcoholate, an alkali metal hydroxide, an alkali metal carbonate, especially potassium carbonate, or a tertiary organic base, particularly triethylamine or pyridine, or of a reaction accelerator, such as potassium iodide, is of advantage.Method EFor the preparation of a quinazolinone derivative of the formula I, by reacting a benzoxazin-4-one of the formula ##STR12## wherein R.sub.1, R.sub.2 and R.sub.3 have the same meanings as in formula I, with an alkylenediamine of the formula wherein R.sub.4, R.sub.5, R.sub.6 and R.sub.7 have the same meanings as in formula I.The reaction is advantageously carried out in a solvent, such as benzene, dioxane, a lower alkanoic acid such as glacial acetic acid, or dimethylformamide, and optionally in the presence of an acid catalyst at a temperature between 50 and 150.degree. C, but preferably at the boiling point of the particular solvent which is used. The preferred solvent is glacial acetic acid. The reaction may, however, also be performed without a solvent.If the end product of methods A through E is a compound of the formula I wherein R.sub.4 is benzyl, the same may be de-benzylated to yield the corresponding compound wherein R.sub.4 is hydrogen. The de-benzylation is preferably effected by means of catalytic hydrogenation, for example with hydrogen in the presence of a catalyst such as palladized charcoal, in a solvent such as ethanol or ethylacetate, at a temperature between 25 and 75.degree. C and at a hydrogen pressure of 1 to 7 atmospheres.On the other hand, if the end product of methods A through E is a compound of the formula I wherein R.sub.4 is hydrogen; the same may be alkylated at the bridge nitrogen atom to form the corresponding compound where R.sub.4 is alkyl. The alkylation is carried out with a conventional alkylating agent, for example with an alkyl halide such as methyl iodide, ethyl iodide or isopropyl bromide, or with a dialkylsulfate such a dimethylsulfate, in a solvent such as acetone, dimethylformamide or dioxane, optionally in the presence of an inorganic or tertiary organic base, at a temperature between 0 and 50.degree. C. A methylation may also be effected by reaction with a mixture of formaldehyde and formic acid, preferably at the boiling point of said mixture.The compounds embraced by formula I are organic bases and therefore form acid addition salts with inorganic or organic acids. Examples of non-toxic, pharmacologically acceptable acid addition salts are those formed with hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, lactic acid, tartaric acid, maleic acid, 8-chlorotheophylline or the like.The starting compounds of the formulas II through X are either described in the literature or may be prepared by known methods, as described in the examples below.
    • 其中A是其中R 1是氢或1至3个碳原子的烷基的式“IMAGE”的化合物; R 2是1至3个碳原子的烷氧基; R3为1〜3个碳原子的烷氧基,或与R2一起亚甲二氧基或亚乙二氧基; R4是氢,1至3个碳原子的烷基或苄基; R5是氢或1〜3个碳原子的烷基; R6是氢或1〜3个碳原子的烷氧基; R 7为1〜3个碳原子的烷氧基,或与R6一起亚甲二氧基或亚乙二氧基; 和N IS 2 OR 3; 和非毒性,药理学上可接受的酸添加量; 化合物作为其有效的有效的H