会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Carbon fibers which can be produced regeneratively or part-regeneratively from CO2 using combined production methods
    • US11898275B2
    • 2024-02-13
    • US17487503
    • 2021-09-28
    • Kolja KuseUwe ArnoldThomas Brück
    • Kolja KuseUwe ArnoldThomas Brück
    • D01F9/22C08F220/44C08F120/44C12P7/6445
    • D01F9/22C08F120/44C08F220/44C12P7/6445
    • The invention describes carbon fibers which are produced on the basis of different process chains from CO2. These include routes through natural resources such as algal biomass to produce carbon fiber precursors such as PAN from CO2, as well as the purely synthetic route via the Fischer-Tropsch synthesis, which is also used to make CO2 carbon fiber precursors. In this way, CO2 from anthropogenic origin is to be converted into a solid aggregate state of carbon fiber, which can be disposed of at the end of its life cycle, after being used as highly valuable building material for industry and man, for the construction of buildings and vehicles. These processes produce by-products such as biodiesel and nutrients that generate added value. The production volumes of the resulting substances should be controllable by combining the methods presented here. Some of these processes alone have no long-term climate relevance because of the high costs, but in the initial phase of such a development with the help of carbon dioxide certificates or socio-political necessities they are able to quickly show that carbon fiber building materials can be produced which by themselves are made from CO2 and at least have the quality to be used in the construction sector and for example are feasible to replace steel, in that the paradigm of todays material production being CO2-positive, can be turned into the opposite. If the processes—which have the disadvantage of large-area consumption on the one hand and the of the lack of energy efficiency in the longer term on the other—can be coupled, they have the potential to support each other. By combining the methods, land use and costs can be adjusted to current regional economic performance based on the material paradigm of the future of carbon-negative production of carbon fibers, also depending on the current evolution of CO2 emission allowance prices. The invention has the desired effect in climate policy that high-tech technology transfer can take place into the currently disadvantaged regions of the world, which promotes the economic performance of today's disadvantaged regions and in particular creates the urgently needed jobs in these regions.