会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Isotope separator
    • 同位素分离器
    • US06726844B2
    • 2004-04-27
    • US10171480
    • 2002-06-12
    • Tihiro OhkawaRobert L. Miller
    • Tihiro OhkawaRobert L. Miller
    • B03C102
    • B01D59/48C02F2101/006
    • An isotope separator includes a cylindrical chamber having first and second ends, and a length “L.” Inside the chamber, an E×B field is applied to produce plasma rotation. The energy in the plasma rotation is chosen to be much higher than the electron temperature which is clamped by radiation. As the plasma then transits the chamber through the length “L”, the electrons cool the thermal temperature of the isotope ions while maintaining the rotation. Under these conditions, the minority and majority isotopes become substantially separated from each other before they exit the chamber. To achieve this result, E×B is determined using mathematically derived expressions and, in compliance with these parameters, the length “L” of the chamber is determined so that the plasma residence time in the chamber, &tgr;1, will be greater than the cooling time, &tgr;2 (&tgr;1>&tgr;2) necessary to affect isotope separation.
    • 同位素分离器包括具有第一端和第二端以及长度“L”的圆柱形室。 在室内,应用ExB场产生等离子体旋转。 选择等离子体旋转中的能量远高于被辐射钳住的电子温度。 当等离子体然后通过长度“L”转移室时,电子冷却同位素离子的热温度同时保持旋转。 在这些条件下,少数和多数同位素在离开室之前彼此基本分离。 为了获得这个结果,使用数学派生表达式确定ExB,并且根据这些参数确定室的长度“L”,使得室中的等离子体停留时间τ1将大于冷却时间, tau2(tau1> tau2)是影响同位素分离所必需的。
    • 2. 发明授权
    • Partially ionized plasma mass filter
    • 部分电离质量过滤器
    • US06398920B1
    • 2002-06-04
    • US09790357
    • 2001-02-21
    • Tihiro OhkawaRobert L. MillerSergei PutvinskiRichard L. Freeman
    • Tihiro OhkawaRobert L. MillerSergei PutvinskiRichard L. Freeman
    • B01J1908
    • H01J49/328
    • A filter and a method for separating ions in a partially ionized plasma according to their mass includes a chamber with crossed electric and magnetic fields established therein. A feed, including metal atoms having ionization potentials in a low range, and gas atoms having an ionization potential in a high range, is introduced into the chamber. An electron temperature below the low range is generated to partially ionize the feed by dissociating the metal atoms from the gas atoms, and by ionizing the metal atoms into light and heavy ions according to their mass to charge ratio. The light and heavy ions are then influenced by the crossed electric and magnetic fields to separate the light ions from the heavy ions.
    • 根据其质量的用于分离部分电离等离子体中的离子的过滤器和方法包括在其中建立了交叉的电场和磁场的腔室。 将包含电离电位低范围的金属原子和高电离电位的气体原料引入室内。 产生低于低范围的电子温度,通过使金属原子与气体原子分离,并通过根据其质荷比将金属原子离子化成轻质和重离子来使进料部分离子化。 轻离子和重离子然后被交叉的电场和磁场影响,以将轻离子与重离子分离。
    • 6. 发明授权
    • Multi-mass filter
    • 多质量过滤器
    • US06293406B1
    • 2001-09-25
    • US09643204
    • 2000-08-21
    • Robert L. MillerTihiro OhkawaRichard L. Freeman
    • Robert L. MillerTihiro OhkawaRichard L. Freeman
    • B03C130
    • H01J49/28
    • A multi-mass filter for separating particles according to their mass-charge ratio includes a chamber for receiving a multi-species plasma that includes particles therein having different mass-charge ratios (with M1 Mc3) and only the intermediate particles M2 are ejected into the second region (M2>Mc2). In another embodiment, the radial electrical field is increased outwardly from the axis to a radial distance a2 (r2) at a first rate. The electrical field is then increased radially outward between a2 (r2) and a radial distance a3 (r3) at a lower rate. This electric field configuration defines the first region between the axis and a2 (r2), and the second region between a2 (r2) and a3 (r3). The third region is located radially beyond the second region. Accordingly, with Mc2=er22B2/(8*(Vctr−V2)) and Mc3=e(r32−r22)B2/(8*V2), particles M1 are confined in the first region, while both particles M3 and M2 are ejected from the first region into the second region. The particles M2 are, however, confined in the second region and only the particles M3 are ejected from the second region into the third region.
    • 用于根据其质荷比分离颗粒的多质量过滤器包括用于接收多种等离子体的室,其包括具有不同质荷电荷的颗粒(M1 Mc3)中,并且仅中间颗粒M2被喷射到第二区域(M2> Mc2)中。 在另一个实施例中,径向电场以第一速率从轴向外增加到径向距离a2(r2)。 然后电场以较低的速率在a2(r2)和径向距离a3(r3)之间径向向外增加。 该电场配置定义了轴和a2(r2)之间的第一区域,a2(r2)和a3(r3)之间的第二区域。 第三区域径向地位于第二区域之外。 因此,在Mc2 = er22B2 /(8 *(Vctr-V2))和Mc3 = e(r32-r22)B2 /(8 * V2)的情况下,粒子M1被限制在第一区域,同时弹出两个粒子M3和M2 从第一个地区进入第二个地区。 然而,颗粒M2被限制在第二区域中,并且仅颗粒M3从第二区域喷射到第三区域中。
    • 8. 发明授权
    • High density plasma formation using whistler mode excitation in a
reduced cross-sectional area formation tube
    • 在减少的截面积形成管中使用吹口哨模式激发的高密度等离子体形成
    • US5361016A
    • 1994-11-01
    • US10553
    • 1993-01-28
    • Tihiro OhkawaStanley I. TsunodaRobert L. Miller
    • Tihiro OhkawaStanley I. TsunodaRobert L. Miller
    • H01J37/32H05H1/18H05H1/46H01J7/24
    • H01J37/32247H01J37/32192H01J37/3266H05H1/18H05H1/46
    • A long plasma formation tube is imbedded in a high magnetic field, with magnetic field lines passing axially through the tube, and with the tube being placed proximate or inside of a resonant cavity. Electromagnetic energy resonates in the resonant cavity representing stored microwave energy. The power density of the stored microwave energy is a function of the cross-sectional area of the resonant cavity. A portion of the stored microwave energy is concentrated to increase its power density, and coupled into the plasma formation tube, which tube has a smaller cross-sectional area than the resonant cavity. The coupled energy excites a whistler wave in the plasma formation tube that forms the plasma within the tube. In one embodiment, the stored microwave power is concentrated by funneling it through a metallic iris that forms one end of the resonant cavity, with a tip of the plasma formation tube being positioned near the metallic iris. In another embodiment, the plasma formation tube is positioned coaxially within the resonant cavity and the stored microwave energy is drawn into the plasma formation tube as plasma begins to form therein because the forming plasma represents a dominant power loss (load) for the stored energy.
    • 长的等离子体形成管嵌入高磁场中,磁场线轴向通过管,并且管被放置在谐振腔的近处或内部。 谐振腔中的电磁能量共振表示存储的微波能量。 存储的微波能量的功率密度是谐振腔的横截面面积的函数。 存储的微波能量的一部分被集中以增加其功率密度,并且耦合到等离子体形成管中,该管具有比谐振腔更小的横截面面积。 耦合能量激发等离子体形成管中的吹口哨波,其在管内形成等离子体。 在一个实施例中,通过将存储的微波功率通过其形成谐振腔的一端的金属虹膜而集中,等离子体形成管的尖端位于金属虹膜附近。 在另一个实施例中,等离子体形成管同轴地位于谐振腔内,并且由于形成等离子体代表存储能量的主要功率损耗(负载),存储的微波能量被吸入等离子体形成管中。
    • 9. 发明申请
    • Chafftron
    • US20070095726A1
    • 2007-05-03
    • US11261113
    • 2005-10-28
    • Tihiro Ohkawa
    • Tihiro Ohkawa
    • B07C5/00
    • B01D43/00
    • A device for separating high mass particles (MH) and low mass particles (ML) from each other includes a laser source for vaporizing a solid target material that contains MH and ML. The resultant vapor jet is directed along an axis and an injector directs a gas flow along a path through the vapor jet perpendicular to the axis of the vapor jet. This entrains ML in the gas flow to thereby separate ML from MH. Collectors are respectively positioned on the axis for collecting MH from the vapor jet, and on the path for collecting ML from the gas flow.
    • 用于分离高质量颗粒(M H H H)和低质量颗粒(M SUB)的装置彼此包括用于蒸发含有M 2的固体目标材料的激光源, H>和M< L>。 所得到的蒸汽射流沿轴线引导,并且喷射器沿着垂直于蒸气射流轴线的蒸气射流的路径引导气流。 这引起气流中的M L L,从而将M L从M H H分离。 收集器分别位于轴线上,用于从蒸汽射流收集M H H,并且在用于从气流收集M L的路径上。
    • 10. 发明授权
    • Controlled potential plasma source
    • 受控电位等离子体源
    • US06375860B1
    • 2002-04-23
    • US08401869
    • 1995-03-10
    • Tihiro OhkawaStanley I. Tsunoda
    • Tihiro OhkawaStanley I. Tsunoda
    • C23F100
    • H01J37/32623C23C16/4401H01J37/32697
    • The occurrence of internally-formed contaminants or negatively-charged particulates within a plasma is minimized by preventing such from becoming trapped in the plasma. The plasma is formed in a plasma chamber having control electrodes and reference electrodes. The control electrodes are biased with a negative potential. The plasma assumes a potential more positive than the control electrodes. The reference electrodes are then biased to be more positive than the plasma. Hence, negative ions or negatively-charged particulates in the plasma are attracted to the more positive reference electrodes, and thus escape the plasma without being trapped therein, and are not available to serve as nucleation or agglomeration points for contaminants. A pair of Helmholtz coils produce a magnetic field having magnetic field lines that run longitudinally between the control electrodes. The magnitude of the magnetic field is sufficiently strong to confine electron current only along the magnetic field lines, yet sufficiently weak to allow negative ion current and negatively-charged particulates to cross the magnetic field lines. Because the plasma current density is dominated by electron current as opposed to ion current (due to the higher thermal velocity of electrons compared to ions), and because electron current is controlled only through the control electrodes, the plasma is effectively controlled by the potential applied to the control electrodes.
    • 通过防止等离子体中的内部形成的污染物或负电荷的微粒的发生被最小化。 等离子体形成在具有控制电极和参考电极的等离子体室中。 控制电极被偏置为负电位。 等离子体具有比控制电极更正的电位。 然后将参考电极偏置成比等离子体更正。 因此,等离子体中的负离子或带负电荷的微粒被吸引到更正的参考电极,并且因此逃离等离子体而不被捕获在其中,并且不能用作污染物的成核或聚集点。 一对亥姆霍兹线圈产生具有在控制电极之间纵向延伸的磁场线的磁场。 磁场的强度足够强以限制电子流仅沿着磁场线,但足够弱以允许负离子电流和带负电荷的微粒穿过磁场线。 因为等离子体电流密度与电子电流相反,与离子电流相反(由于电子与离子相比较高的热速度),并且由于仅通过控制电极控制电子电流,所以等离子体被施加的电位有效地控制 到控制电极。