会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Segment-based change detection method in multivariate data stream
    • 多变量数据流中基于段的变化检测方法
    • US08005771B2
    • 2011-08-23
    • US12236587
    • 2008-09-24
    • Terrence ChenChao YuanAbdul Saboor SheikhClaus Neubauer
    • Terrence ChenChao YuanAbdul Saboor SheikhClaus Neubauer
    • G06F15/18
    • G06K9/00536G06K9/6284
    • A method and framework are described for detecting changes in a multivariate data stream. A training set is formed by sampling time windows in a data stream containing data reflecting normal conditions. A histogram is created to summarize each window of data, and data within the histograms are clustered to form test distribution representatives to minimize the bulk of training data. Test data is then summarized using histograms representing time windows of data and data within the test histograms are clustered. The test histograms are compared to the training histograms using nearest neighbor techniques on the clustered data. Distances from the test histograms to the test distribution representatives are compared to a threshold to identify anomalies.
    • 描述了用于检测多变量数据流中的变化的方法和框架。 通过在包含反映正常条件的数据的数据流中采样时间窗口来形成训练集。 创建直方图以总结每个数据窗口,并且将直方图中的数据进行聚类以形成测试分发代表以最小化训练数据的大部分。 然后使用表示数据的时间窗口的直方图来汇总测试数据,并且将测试直方图中的数据聚类。 将测试直方图与使用最近邻技术的聚类数据的训练直方图进行比较。 将测试直方图与测试分布代表的距离与阈值进行比较以识别异常。
    • 2. 发明申请
    • Segment-Based Change Detection Method in Multivariate Data Stream
    • 多变量数据流中基于段的变化检测方法
    • US20090091443A1
    • 2009-04-09
    • US12236587
    • 2008-09-24
    • Terrence ChenChao YuanAbdul Saboor SheikhClaus Neubauer
    • Terrence ChenChao YuanAbdul Saboor SheikhClaus Neubauer
    • G08B21/00
    • G06K9/00536G06K9/6284
    • A method and framework are described for detecting changes in a multivariate data stream. A training set is formed by sampling time windows in a data stream containing data reflecting normal conditions. A histogram is created to summarize each window of data, and data within the histograms are clustered to form test distribution representatives to minimize the bulk of training data. Test data is then summarized using histograms representing time windows of data and data within the test histograms are clustered. The test histograms are compared to the training histograms using nearest neighbor techniques on the clustered data. Distances from the test histograms to the test distribution representatives are compared to a threshold to identify anomalies.
    • 描述了用于检测多变量数据流中的变化的方法和框架。 通过在包含反映正常条件的数据的数据流中采样时间窗口来形成训练集。 创建直方图以总结每个数据窗口,并且将直方图中的数据进行聚类以形成测试分发代表以最小化训练数据的大部分。 然后使用表示数据的时间窗口的直方图来汇总测试数据,并且将测试直方图中的数据聚类。 将测试直方图与使用最近邻技术的聚类数据的训练直方图进行比较。 将测试直方图与测试分布代表的距离与阈值进行比较以识别异常。
    • 3. 发明授权
    • Method and apparatus for improved fault detection in power generation equipment
    • 发电设备故障检测方法及装置
    • US07953577B2
    • 2011-05-31
    • US11202861
    • 2005-08-12
    • Chao YuanClaus NeubauerZehra Cataltepe
    • Chao YuanClaus NeubauerZehra Cataltepe
    • G06F11/30G21C17/00
    • G05B23/0254G05B23/0297
    • A method and apparatus for detecting faults in power plant equipment is discloses using sensor confidence and an improved method of identifying the normal operating range of the power generation equipment as measured by those sensors. A confidence is assigned to a sensor in proportion to the residue associated with that sensor. If the sensor has high residue, a small confidence is assigned to the sensor. If a sensor has a low residue, a high confidence is assigned to that sensor, and appropriate weighting of that sensor with other sensors is provided. A feature space trajectory (FST) method is used to model the normal operating range curve distribution of power generation equipment characteristics. Such an FST method is illustratively used in conjunction with a minimum spanning tree (MST) method to identify a plurality of nodes and to then connect those with line segments that approximate a curve.
    • 一种用于检测发电厂设备故障的方法和装置公开了使用传感器置信度和一种通过这些传感器测量的识别发电设备的正常工作范围的改进方法。 与传感器相关的残差成比例地分配给传感器的置信度。 如果传感器具有高残留量,那么传感器的信心就很小。 如果传感器具有较低的残留量,则会将高置信度分配给该传感器,并提供该传感器与其他传感器的适当加权。 使用特征空间轨迹(FST)方法对发电设备特性的正常工作范围曲线分布进行建模。 这种FST方法被说明性地与最小生成树(MST)方法一起使用以识别多个节点,然后将它们与近似于曲线的线段连接。
    • 5. 发明授权
    • Method to use a receiver operator characteristics curve for model comparison in machine condition monitoring
    • 在机器状态监测中使用接收机操作员特征曲线进行模型比较的方法
    • US07552035B2
    • 2009-06-23
    • US10977220
    • 2004-10-28
    • Zehra CataltepeClaus NeubauerChao Yuan
    • Zehra CataltepeClaus NeubauerChao Yuan
    • G06F17/10
    • G05B23/0243
    • A method to use a receiver operator characteristics curve for model comparison in machine condition monitoring. The method and systems of using this method may be used to evaluate different monitoring models. These models may be used to monitor a variety of different systems such as power plant systems or magnetic resonance imaging systems. The methods use training data and designate one or more points in the data as a false negative, thereby permitting a receiver operator characteristics analysis to be performed. Multiple receiver operator characteristics analyses may be performed either on different models or on different points within a single model, thereby permitting the receiver operator characteristics analyses to be used to select a beneficial model for monitoring a particular system.
    • 一种在机器状态监测中使用接收机操作员特征曲线进行模型比较的方法。 使用该方法的方法和系统可用于评估不同的监测模型。 这些模型可用于监测各种不同的系统,例如发电厂系统或磁共振成像系统。 该方法使用训练数据并将数据中的一个或多个点指定为假阴性,从而允许执行接收者操作员特征分析。 可以在单个模型中的不同模型或不同点执行多个接收者操作者特征分析,从而允许接收者操作员特征分析用于选择用于监视特定系统的有益模型。
    • 8. 发明申请
    • Joint approach of out-of-range detection and fault detection for power plant monitoring
    • 电站监控超范围检测和故障检测的联合方法
    • US20050055609A1
    • 2005-03-10
    • US10932573
    • 2004-09-02
    • Chao YuanZehra CataltepeClaus NeubauerMing Fang
    • Chao YuanZehra CataltepeClaus NeubauerMing Fang
    • G05B23/02G06F11/00
    • G05B23/0254G05B23/0235
    • A joint approach of out-of-range detection and fault detection for power plant monitoring. The method initially determines whether a sensor is an independent sensor or a dependent sensor. If the sensor is an independent sensor, then an operating range is established for each independent sensor. A reading from each independent sensor is then compared with the operating range that has been established. If the reading is out-of-range, an alarm may be activated. If the reading is not out-of-range, then this reading is used to determine an expected operating range for each dependent sensor. A reading from each dependent sensor is then compared with the predicted operating range. Again, if the reading from the dependent sensor is out of the expected range, an alarm may be sounded.
    • 电站监控的超范围检测和故障检测的联合方法。 该方法最初确定传感器是独立传感器还是依赖传感器。 如果传感器是独立的传感器,则为每个独立的传感器建立一个工作范围。 然后将每个独立传感器的读数与已建立的操作范围进行比较。 如果读数超出范围,则可能会激活报警。 如果读数不超出范围,则该读数用于确定每个相关传感器的预期工作范围。 然后将每个从属传感器的读数与预测的工作范围进行比较。 再次,如果来自从属传感器的读数超出预期范围,则可能会发出警报。