会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Systems and methods for segmenting digital images
    • 用于分割数字图像的系统和方法
    • US08345976B2
    • 2013-01-01
    • US12852096
    • 2010-08-06
    • Su WangShengyang DaiAkira NakamuraTakeshi OhashiJun Yokono
    • Su WangShengyang DaiAkira NakamuraTakeshi OhashiJun Yokono
    • G06K9/34
    • G06K9/6256G06K9/0014G06T7/0012G06T7/11G06T7/136G06T7/187G06T2207/30024
    • Methods and systems disclosed herein provide the capability to automatically process digital pathology images quickly and accurately. According to one embodiment, an digital pathology image segmentation task may be divided into at least two parts. An image segmentation task may be carried out utilizing both bottom-up analysis to capture local definition of features and top-down analysis to use global information to eliminate false positives. In some embodiments, an image segmentation task is carried out using a “pseudo-bootstrapping” iterative technique to produce superior segmentation results. In some embodiments, the superior segmentation results produced by the pseudo-bootstrapping method are used as input in a second segmentation task that uses a combination of bottom-up and top-down analysis.
    • 本文公开的方法和系统提供了快速且准确地自动处理数字病理图像的能力。 根据一个实施例,数字病理图像分割任务可以被划分为至少两部分。 图像分割任务可以利用自下而上的分析来捕获特征的局部定义和自上而下的分析,以使用全局信息来消除假阳性。 在一些实施例中,使用伪自举迭代技术来执行图像分割任务以产生优异的分割结果。 在一些实施例中,通过伪自举方法产生的优越分割结果被用作使用自下而上和自顶向下分析的组合的第二分段任务中的输入。
    • 6. 发明授权
    • Operational control method, program, and recording media for robot device, and robot device
    • 机器人装置的操作控制方法,程序和记录介质,以及机器人装置
    • US06697711B2
    • 2004-02-24
    • US10258110
    • 2002-10-18
    • Jun YokonoKohtaro SabeGabriel CostaTakeshi Ohashi
    • Jun YokonoKohtaro SabeGabriel CostaTakeshi Ohashi
    • G06F1900
    • G06N3/008
    • A robot apparatus (1) includes leg blocks (3A to 3D), head block (4), etc. as a moving part (16), a motion controller (102), learning unit (103), prediction unit (104) and a drive unit (105). When the moving part (106), any of the blocks, is operated from outside, the learning unit (103) learns a time-series signal generated due to the external operation. The motion controller (102) and drive unit (105) control together the moving part (106) based on a signal generated at the moving part (106) due to an external force applied to the robot apparatus (1) and a signal having already been learned by the learning unit (103) to make an action taught by the user. The prediction unit (105) predicts whether the moving part (106) makes the taught action according to the initial signal generated at the moving part (106) due to the applied external force. Thus, the robot apparatus (1) can learn an action taught by the user and determine an external force-caused signal to make the taught action.
    • 机器人装置(1)包括作为移动部件(16)的腿部块(3A至3D),头部块(4)等,运动控制器(102),学习单元(103),预测单元(104)和 驱动单元(105)。 当移动部分(106),任何块,从外部操作时,学习单元(103)学习由于外部操作而产生的时间序列信号。 运动控制器(102)和驱动单元(105)基于由于施加到机器人装置(1)的外力而在运动部件(106)处产生的信号,以及已经具有的信号,一起控制运动部件(106) 被学习单元(103)学习以进行用户教导的动作。 预测单元(105)根据施加的外力来预测移动部件(106)是否根据在移动部件(106)产生的初始信号进行教导动作。 因此,机器人装置(1)可以学习用户教导的动作,并确定外力产生的信号以进行教导动作。
    • 7. 发明授权
    • Systems and methods for digital image analysis
    • 数字图像分析的系统和方法
    • US09208405B2
    • 2015-12-08
    • US12851818
    • 2010-08-06
    • Shengyang DaiSu WangAkira NakamuraTakeshi OhashiJun Yokono
    • Shengyang DaiSu WangAkira NakamuraTakeshi OhashiJun Yokono
    • G06K9/00G06K9/62
    • G06K9/6292G06K9/6254
    • Systems and methods for implementing a hierarchical image recognition framework for classifying digital images are provided. The provided hierarchical image recognition framework utilizes a multi-layer approach to model training and image classification tasks. A first layer of the hierarchical image recognition framework generates first layer confidence scores, which are utilized by the second layer to produce a final recognition score. The provided hierarchical image recognition framework permits model training and image classification tasks to be performed more accurately and in a less resource intensive fashion than conventional single-layer image recognition frameworks. In some embodiments real-time operator guidance is provided for an image classification task.
    • 提供了用于实现用于分类数字图像的分层图像识别框架的系统和方法。 所提供的分层图像识别框架利用多层方法对训练和图像分类任务进行建模。 分层图像识别框架的第一层产生第一层置信度得分,其由第二层利用以产生最终识别分数。 所提供的分层图像识别框架允许模型训练和图像分类任务以比常规单层图像识别框架更精确和更少资源密集的方式执行。 在一些实施例中,为图像分类任务提供了实时操作者指导。
    • 9. 发明申请
    • SYSTEMS AND METHODS FOR DIGITAL IMAGE ANALYSIS
    • 数字图像分析系统与方法
    • US20120033861A1
    • 2012-02-09
    • US12851818
    • 2010-08-06
    • Shengyang DaiSu WangAkira NakamuraTakeshi OhashiJun Yokono
    • Shengyang DaiSu WangAkira NakamuraTakeshi OhashiJun Yokono
    • G06K9/00
    • G06K9/6292G06K9/6254
    • Systems and methods for implementing a hierarchical image recognition framework for classifying digital images are provided. The provided hierarchical image recognition framework utilizes a multi-layer approach to model training and image classification tasks. A first layer of the hierarchical image recognition framework generates first layer confidence scores, which are utilized by the second layer to produce a final recognition score. The provided hierarchical image recognition framework permits model training and image classification tasks to be performed more accurately and in a less resource intensive fashion than conventional single-layer image recognition frameworks. In some embodiments real-time operator guidance is provided for an image classification task.
    • 提供了用于实现用于分类数字图像的分层图像识别框架的系统和方法。 所提供的分层图像识别框架利用多层方法对训练和图像分类任务进行建模。 分层图像识别框架的第一层产生第一层置信度得分,其由第二层利用以产生最终识别分数。 所提供的分层图像识别框架允许模型训练和图像分类任务以比常规单层图像识别框架更精确和更少资源密集的方式执行。 在一些实施例中,为图像分类任务提供了实时操作者指导。