会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • MAGNETIC REFRIGERATING DEVICE AND MAGNETIC REFRIGERATING METHOD
    • 磁性制冷装置和磁性制冷方法
    • US20080078184A1
    • 2008-04-03
    • US11860818
    • 2007-09-25
    • Akiko SAITOTadahiko KobayashiHideyuki TsujiHideo IwasakiKatsumi HisanoAkihiro KogaAkihiro KasaharaTakuya Takahashi
    • Akiko SAITOTadahiko KobayashiHideyuki TsujiHideo IwasakiKatsumi HisanoAkihiro KogaAkihiro KasaharaTakuya Takahashi
    • F25B21/00
    • F25B21/00F25B2321/0021F25B2321/0023Y02B30/66
    • A magnetic refrigerating device includes: a magnetic refrigerating unit including a magnetic material “A” exhibiting a magneto-caloric effect that the temperature of the material “A” is increased by the application of a magnetic field and the temperature of the material “A” is decreased by the removal of a magnetic field, a magnetic material “B” exhibiting a magneto-caloric effect that the temperature of the material “B” is decreased by the application of a magnetic field and the temperature of the material “B” is increased by the removal of a magnetic field, a heat conductive material “a” exhibiting higher heat conductivity under the application of a magnetic field and lower heat conductivity under the removal of a magnetic field, and a heat conductive material “b” exhibiting lower heat conductivity under the application of a magnetic field and higher heat conductivity under the removal of a magnetic field, wherein the magnetic refrigerating unit is configured so as to include at least one layered structure denoted by “AaBb” or “AbBa”; and a magnetic field-applying means to apply a magnetic field to the magnetic refrigerating unit.
    • 磁性制冷装置包括:磁性制冷装置,其具有表现出通过施加磁场使材料“A”的温度升高的磁热量效应的磁性材料“A”,并且材料“A”的温度 通过去除磁场而减少磁性材料“B”,表现出通过施加磁场使材料“B”的温度降低的磁热量效应的磁性材料“B”,并且材料“B”的温度为 通过除去磁场而增加,在磁场施加下表现出更高导热性的导热材料“a”,以及在去除磁场时具有较低热导率的导热材料“a”,以及表现出较低热量的导热材料“b” 在磁场的施加下的导电性和更高的导热性,其中磁性制冷单元被配置为包括在列 由“AaBb”或“AbBa”表示的一个分层结构; 以及向磁性制冷装置施加磁场的磁场施加装置。
    • 2. 发明申请
    • Magnetic refrigeration material and method of manufacturing thereof
    • 磁性制冷材料及其制造方法
    • US20060213580A1
    • 2006-09-28
    • US11365683
    • 2006-03-02
    • Hideyuki TsujiAkiko SaitoTadahiko Kobayashi
    • Hideyuki TsujiAkiko SaitoTadahiko Kobayashi
    • H01F1/057
    • H01F1/015C22C30/00C22C38/002C22C38/005C22C38/02
    • A magnetic material comprising a NaZn13 type crystal structure with uniform and fine microstructure exhibiting excellent characteristics as a magnetic refrigeration material, and a method of manufacturing the magnetic refrigeration material are provided. An alloy composition for forming magnetic material of the NaZn13 type crystal structure was melted comprising 0.5 atomic percent to 1.5 atomic percent of B to molten metal. The molten metal is rapidly cooled and solidified by a forced cooling process. Then, a rapidly cooled alloy having the NaZn13 type crystal structure was obtained. In this manner, magnetic materials comprising the NaZn13 type crystal structure phase, or the NaZn13 type crystal structure phase accompanied with other phases such as α-Fe phase having very small phase regions was manufactured without requiring heat treatment for a long time. As the result, productivity of manufacturing the magnetic refrigeration material is remarkably enhanced.
    • 提供了包含具有显示出作为磁性制冷材料的优异特性的均匀和微细微结构的NaZn 13 N型晶体结构的磁性材料以及制造磁性制冷材料的方法。 用于形成NaZn 13型晶体结构的磁性材料的合金组合物熔融包含0.5原子%至1.5原子%的B与熔融金属。 熔融金属通过强制冷却过程迅速冷却和固化。 然后,获得具有NaZn 13 N型晶体结构的快速冷却的合金。 以这种方式,包含NaZn 13+型晶体结构相的磁性材料或NaZn 13 N型晶体结构相伴随着诸如α-Fe相之类的其它相,具有非常小的 在不需要长时间热处理的情况下制造相区。 结果,制造磁性制冷材料的生产率显着提高。
    • 6. 发明申请
    • Magnetic material and manufacturing method thereof
    • 磁性材料及其制造方法
    • US20060254385A1
    • 2006-11-16
    • US11414302
    • 2006-05-01
    • Hideyuki TsujiAkiko SaitoTadahiko Kobayashi
    • Hideyuki TsujiAkiko SaitoTadahiko Kobayashi
    • H01F1/08
    • H01F1/015
    • A powder raw material is prepared by mixing at least two kinds of powders selected from a powder A, a powder B, a powder C, and a powder D. A sintered body of a magnetic material having an NaZn13 crystal structure phase is formed by heating the powder raw material while applying a pressure treatment. The powder A is at least one of elemental powder of element R selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. The powder B is at least one of elemental powder of element T selected from Fe, Co, Ni, Mn, and Cr. The powder C is at least one of elemental powder of element M selected from Si, B, C, Ge, Al, Ga, and In. The powder D is a compound powder composed of at least two kinds of elements selected from the element R, the element T, and the element M.
    • 通过混合选自粉末A,粉末B,粉末C和粉末D中的至少两种粉末来制备粉末原料。具有NaZn 13 N的磁性材料的烧结体 >晶体结构相通过在施加压力处理的同时加热粉末原料而形成。 粉末A是选自Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm和Yb中的元素R的元素粉末中的至少一种。 粉末B是选自Fe,Co,Ni,Mn和Cr中的元素T的元素粉末中的至少一种。 粉末C是选自Si,B,C,Ge,Al,Ga和In中的元素M的元素粉末中的至少一种。 粉末D是由选自元素R,元素T和元素M中的至少两种元素组成的复合粉末。
    • 9. 发明授权
    • Magnetic refrigeration material and method of manufacturing thereof
    • 磁性制冷材料及其制造方法
    • US07914628B2
    • 2011-03-29
    • US11365683
    • 2006-03-02
    • Hideyuki TsujiAkiko SaitoTadahiko Kobayashi
    • Hideyuki TsujiAkiko SaitoTadahiko Kobayashi
    • H01F1/053
    • H01F1/015C22C30/00C22C38/002C22C38/005C22C38/02
    • A magnetic material comprising a NaZn13 type crystal structure with uniform and fine microstructure exhibiting excellent characteristics as a magnetic refrigeration material, and a method of manufacturing the magnetic refrigeration material are provided. An alloy composition for forming magnetic material of the NaZn13 type crystal structure was melted comprising 0.5 atomic percent to 1.5 atomic percent of B to molten metal. The molten metal is rapidly cooled and solidified by a forced cooling process. Then, a rapidly cooled alloy having the NaZn13 type crystal structure was obtained. In this manner, magnetic materials comprising the NaZn13 type crystal structure phase, or the NaZn13 type crystal structure phase accompanied with other phases such as α-Fe phase having very small phase regions was manufactured without requiring heat treatment for a long time. As the result, productivity of manufacturing the magnetic refrigeration material is remarkably enhanced.
    • 本发明提供一种磁性材料,其特征在于,包括具有均匀且细微的显微组织的NaZn13型结晶结构,具有优异的磁性制冷材料的特性,以及磁性制冷材料的制造方法。 将用于形成NaZn13型晶体结构的磁性材料的合金组合物熔融包含0.5原子%至1.5原子%的B与熔融金属。 熔融金属通过强制冷却过程迅速冷却和固化。 然后,获得具有NaZn13型晶体结构的快速冷却的合金。 以这种方式制造包含NaZn13型晶体结构相的磁性材料或者伴随着具有非常小的相位区域的α-Fe相等其它相的NaZn13型晶体结构相,而不需要长时间的热处理。 结果,制造磁性制冷材料的生产率显着提高。
    • 10. 发明授权
    • Magnetic material and manufacturing method thereof
    • 磁性材料及其制造方法
    • US07563330B2
    • 2009-07-21
    • US11414302
    • 2006-05-01
    • Hideyuki TsujiAkiko SaitoTadahiko Kobayashi
    • Hideyuki TsujiAkiko SaitoTadahiko Kobayashi
    • H01F1/055
    • H01F1/015
    • A powder raw material is prepared by mixing at least two kinds of powders selected from a powder A, a powder B, a powder C, and a powder D. A sintered body of a magnetic material having an NaZn13 crystal structure phase is formed by heating the powder raw material while applying a pressure treatment. The powder A is at least one of elemental powder of element R selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. The powder B is at least one of elemental powder of element T selected from Fe, Co, Ni, Mn, and Cr. The powder C is at least one of elemental powder of element M selected from Si, B, C, Ge, Al, Ga, and In. The powder D is a compound powder composed of at least two kinds of elements selected from the element R, the element T, and the element M.
    • 通过混合粉末A,粉末B,粉末C和粉末D中的至少两种粉末来制备粉末原料。通过加热形成具有NaZn13晶体结构相的磁性材料的烧结体 粉末原料,同时进行压力处理。 粉末A是选自Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm和Yb的元素R的元素粉末中的至少一种。 粉末B是选自Fe,Co,Ni,Mn和Cr中的元素T的元素粉末中的至少一种。 粉末C是选自Si,B,C,Ge,Al,Ga和In中的元素M的元素粉末中的至少一种。 粉末D是由选自元素R,元素T和元素M中的至少两种元素组成的复合粉末。