会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Robust feature matching for visual search
    • 强大的功能匹配视觉搜索
    • US09036925B2
    • 2015-05-19
    • US13312335
    • 2011-12-06
    • Sundeep VaddadiOnur C. HamsiciYuriy ReznikJohn H. HongChong U. Lee
    • Sundeep VaddadiOnur C. HamsiciYuriy ReznikJohn H. HongChong U. Lee
    • G06K9/62G06K9/54G06K9/60G06F17/30
    • G06F17/30247G06K9/62G06K9/627
    • Techniques are disclosed for performing robust feature matching for visual search. An apparatus comprising an interface and a feature matching unit may implement these techniques. The interface receives a query feature descriptor. The feature matching unit then computes a distance between a query feature descriptor and reference feature descriptors and determines a first group of the computed distances and a second group of the computed distances in accordance with a clustering algorithm, where this second group of computed distances comprises two or more of the computed distances. The feature matching unit then determines whether the query feature descriptor matches one of the reference feature descriptors associated with a smallest one of the computed distances based on the determined first group and second group of the computed distances.
    • 公开了用于执行用于视觉搜索的鲁棒特征匹配的技术。 包括接口和特征匹配单元的装置可以实现这些技术。 接口接收查询特征描述符。 特征匹配单元然后计算查询特征描述符和参考特征描述符之间的距离,并且根据聚类算法确定计算出的距离的第一组和所计算的距离的第二组,其中该第二组计算距离包括两个 或更多的计算距离。 特征匹配单元然后基于所确定的计算出的距离的第一组和第二组来确定查询特征描述符是否与与计算出的距离中的最小一个相关联的参考特征描述符之一匹配。
    • 2. 发明申请
    • ROBUST FEATURE MATCHING FOR VISUAL SEARCH
    • 强大的功能匹配视觉搜索
    • US20120263388A1
    • 2012-10-18
    • US13312335
    • 2011-12-06
    • Sundeep VaddadiOnur C. HamsiciYuriy ReznikJohn H. HongChong U. Lee
    • Sundeep VaddadiOnur C. HamsiciYuriy ReznikJohn H. HongChong U. Lee
    • G06K9/62
    • G06F17/30247G06K9/62G06K9/627
    • Techniques are disclosed for performing robust feature matching for visual search. An apparatus comprising an interface and a feature matching unit may implement these techniques. The interface receives a query feature descriptor. The feature matching unit then computes a distance between a query feature descriptor and reference feature descriptors and determines a first group of the computed distances and a second group of the computed distances in accordance with a clustering algorithm, where this second group of computed distances comprises two or more of the computed distances. The feature matching unit then determines whether the query feature descriptor matches one of the reference feature descriptors associated with a smallest one of the computed distances based on the determined first group and second group of the computed distances.
    • 公开了用于执行用于视觉搜索的鲁棒特征匹配的技术。 包括接口和特征匹配单元的装置可以实现这些技术。 接口接收查询特征描述符。 特征匹配单元然后计算查询特征描述符和参考特征描述符之间的距离,并且根据聚类算法确定计算出的距离的第一组和所计算的距离的第二组,其中该第二组计算距离包括两个 或更多的计算距离。 特征匹配单元然后基于所确定的计算出的距离的第一组和第二组来确定查询特征描述符是否与与计算出的距离中的最小一个相关联的参考特征描述符之一匹配。
    • 8. 发明申请
    • EFFICIENT DESCRIPTOR EXTRACTION OVER MULTIPLE LEVELS OF AN IMAGE SCALE SPACE
    • 图像尺度空间的多个级别的有效描述符提取
    • US20110255781A1
    • 2011-10-20
    • US13090180
    • 2011-04-19
    • Onur C. HamsiciJohn H. HongYuriy ReznikSundeep VaddadiChong Uk. Lee
    • Onur C. HamsiciJohn H. HongYuriy ReznikSundeep VaddadiChong Uk. Lee
    • G06K9/46
    • G06K9/4671
    • A local feature descriptor for a point in an image is generated over multiple levels of an image scale space. The image is gradually smoothened to obtain a plurality of scale spaces. A point may be identified as the point of interest within a first scale space from the plurality of scale spaces. A plurality of image derivatives is obtained for each of the plurality of scale spaces. A plurality of orientation maps is obtained (from the plurality of image derivatives) for each scale space in the plurality of scale spaces. Each of the plurality of orientation maps is then smoothened (e.g., convolved) to obtain a corresponding plurality of smoothed orientation maps. Therefore, a local feature descriptor for the point may be generated by sparsely sampling a plurality of smoothed orientation maps corresponding to two or more scale spaces from the plurality of scale spaces.
    • 图像中的一个点的局部特征描述符是通过图像比例空间的多个级别生成的。 图像逐渐平滑以获得多个刻度空间。 点可以被识别为来自多个刻度空间的第一刻度空间内的兴趣点。 为多个刻度空间中的每一个获得多个图像导数。 对于多个刻度空间中的每个刻度空间,获得多个取向图(来自多个图像衍生)。 然后对多个取向图中的每一个进行平滑(例如,卷积)以获得相应的多个平滑取向图。 因此,可以通过从多个比例空间中稀疏采样对应于两个或更多比例空间的多个平滑取向图来生成该点的局部特征描述符。
    • 9. 发明授权
    • Efficient descriptor extraction over multiple levels of an image scale space
    • 在图像尺度空间的多个级别上进行有效的描述符提取
    • US09530073B2
    • 2016-12-27
    • US13090180
    • 2011-04-19
    • Onur C. HamsiciJohn H. HongYuriy ReznikSundeep VaddadiChong Uk. Lee
    • Onur C. HamsiciJohn H. HongYuriy ReznikSundeep VaddadiChong Uk. Lee
    • G06K9/00G06K9/46
    • G06K9/4671
    • A local feature descriptor for a point in an image is generated over multiple levels of an image scale space. The image is gradually smoothened to obtain a plurality of scale spaces. A point may be identified as the point of interest within a first scale space from the plurality of scale spaces. A plurality of image derivatives is obtained for each of the plurality of scale spaces. A plurality of orientation maps is obtained (from the plurality of image derivatives) for each scale space in the plurality of scale spaces. Each of the plurality of orientation maps is then smoothened (e.g., convolved) to obtain a corresponding plurality of smoothed orientation maps. Therefore, a local feature descriptor for the point may be generated by sparsely sampling a plurality of smoothed orientation maps corresponding to two or more scale spaces from the plurality of scale spaces.
    • 图像中的一个点的局部特征描述符是通过图像比例空间的多个级别生成的。 图像逐渐平滑以获得多个刻度空间。 点可以被识别为来自多个刻度空间的第一刻度空间内的兴趣点。 为多个刻度空间中的每一个获得多个图像导数。 对于多个刻度空间中的每个刻度空间,获得多个取向图(来自多个图像衍生)。 然后对多个取向图中的每一个进行平滑(例如,卷积)以获得相应的多个平滑取向图。 因此,可以通过从多个比例空间中稀疏采样对应于两个或更多比例空间的多个平滑取向图来生成该点的局部特征描述符。