会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Antialiasing compositing in graphic object rendering
    • US20050035976A1
    • 2005-02-17
    • US10875333
    • 2004-06-25
    • Stephen EcobScott BradleyMichael Lawther
    • Stephen EcobScott BradleyMichael Lawther
    • G06T11/00G06T15/50G09G5/00H04N1/46H04N1/60
    • G06T15/503
    • Disclosed is an imaging engine system (699) generally intended for the reproduction of graphical object images using apparatus having limited computing resources, such as so-called “thin clients”. Numerous developments of traditional image processing and rendering enable high quality image generation. One such development takes advantage of temporal coherence between one frame in an animation sequence and the succeeding frame. In particular, there will often be some edges (233, 235) of graphical objects that remain “static” across several contiguous frames. One example of this includes those edges used to draw image background detail. Another development performs antialiasing during scan line rendering of a graphic object image where sub-pixel resolution coverage bit-masks (A-buffers 29-34) are generated for a limited number of scan lines at a time. Preferably the A-buffers are generated for only one pixel at a time. Another development relates to rendering a scan line of a graphic object image in a scan line renderer for a span of pixels lying between two x-order consecutive edges intersecting the scan line. For the span of pixels, this development maintains a subset of depths present in the rendering, the subset being those depths that are present on the span and being maintained in depth order (590) and subject to removal of depths where the corresponding depth is no longer active. In another development a compositing stack (6101-6107) of image layers to be rendered in a raster scan fashion is simplified. Rendering is operable over a run of two or more pixels within which a relationship between graphical objects contributing to the layers does not change. The layers are first divided into groups (6110, 6112, 6114), with each group being separated by a layer having variable transparency (6111, 6113). For a top one of the groups, layers having constant color in the run are reduced to a single equivalent color (6115, 6116, 6117) having an associated accumulated contribution. Many other developments are disclosed.
    • 2. 发明申请
    • Optimising compositing calculations for a run of pixels
    • US20050017984A1
    • 2005-01-27
    • US10875199
    • 2004-06-25
    • Michael LawtherChristopher CormieStephen Ecob
    • Michael LawtherChristopher CormieStephen Ecob
    • G06T11/00G06T15/40G06T15/50G09G5/00G09G5/02H04N1/46H04N1/60
    • G06T15/503
    • Disclosed is an imaging engine system (699) generally intended for the reproduction of graphical object images using apparatus having limited computing resources, such as so-called “thin clients”. Numerous developments of traditional image processing and rendering enable high quality image generation. One such development takes advantage of temporal coherence between one frame in an animation sequence and the succeeding frame. In particular, there will often be some edges (233, 235) of graphical objects that remain “static” across several contiguous frames. One example of this includes those edges used to draw image background detail. Another development performs antialiasing during scan line rendering of a graphic object image where sub-pixel resolution coverage bit-masks (A-buffers 29-34) are generated for a limited number of scan lines at a time. Preferably the A-buffers are generated for only one pixel at a time. Another development relates to rendering a scan line of a graphic object image in a scan line renderer for a span of pixels lying between two x-order consecutive edges intersecting the scan line. For the span of pixels, this development maintains a subset of depths present in the rendering, the subset being those depths that are present on the span and being maintained in depth order (590) and subject to removal of depths where the corresponding depth is no longer active. In another development a compositing stack (6101-6107) of image layers to be rendered in a raster scan fashion is simplified. Rendering is operable over a run of two or more pixels within which a relationship between graphical objects contributing to the layers does not change. The layers are first divided into groups (6110, 6112, 6114), with each group being separated by a layer having variable transparency (6111, 6113). For a top one of the groups, layers having constant color in the run are reduced to a single equivalent color (6115, 6116, 6117) having an associated accumulated contribution. Many other developments are disclosed.
    • 4. 发明申请
    • Method for tracking depths in a scanline based raster image processor
    • US20060244748A1
    • 2006-11-02
    • US10553604
    • 2004-06-25
    • Timothy LongScott BradleyStephen EcobBenjamin Lever
    • Timothy LongScott BradleyStephen EcobBenjamin Lever
    • G06T15/40
    • G06T15/40G06T11/40
    • Disclosed is an imaging engine system (699) generally intended for the reproduction of graphical object images using apparatus having limited computing resources, such as so-called “thin clients”. Numerous developments of traditional image processing and rendering enable high quality image generation. One such development takes advantage of temporal coherence between one frame in an animation sequence and the succeeding frame. In particular, there will often be some edges (233, 235) of graphical objects that remain “static” across several contiguous frames. One example of this includes those edges used to draw image background detail. Another development performs antialiasing during scan line rendering of a graphic object image where sub-pixel resolution coverage bit-masks (A-buffers 29-34) are generated for a limited number of scan lines at a time. Preferably the A-buffers are generated for only one pixel at a time. Another development relates to rendering a scan line of a graphic object image in a scan line renderer for a span of pixels lying between two x-order consecutive edges intersecting the scan line. For the span of pixels, this development maintains a subset of depths present in the rendering, the subset being those depths that are present on the span and being maintained in depth order (590) and subject to removal of depths where the corresponding depth is no longer active. In another development a compositing stack (6101-6107) of image layers to be rendered in a raster scan fashion is simplified. Rendering is operable over a run of two or more pixels within which a relationship between graphical objects contributing to the layers does not change. The layers are first divided into groups (6110, 6112, 6114), with each group being separated by a layer having variable transparency (6111, 6113). For a top one of the groups, layers having constant color in the run are reduced to a single equivalent color (6115, 6116, 6117) having an associated accumulated contribution. Many other developments are disclosed.
    • 5. 发明申请
    • Rendering successive frames in a graphic object system
    • US20050007372A1
    • 2005-01-13
    • US10875432
    • 2004-06-25
    • Stephen EcobScott Bradley
    • Stephen EcobScott Bradley
    • G06T11/00G06T15/70G09G5/36G09G5/38
    • G06T11/40G06T13/80
    • Disclosed is an imaging engine system (699) generally intended for the reproduction of graphical object images using apparatus having limited computing resources, such as so-called “thin clients”. Numerous developments of traditional image processing and rendering enable high quality image generation. One such development takes advantage of temporal coherence between one frame in an animation sequence and the succeeding frame. In particular, there will often be some edges (233, 235) of graphical objects that remain “static” across several contiguous frames. One example of this includes those edges used to draw image background detail. Another development performs antialiasing during scan line rendering of a graphic object image where sub-pixel resolution coverage bit-masks (A-buffers 29-34) are generated for a limited number of scan lines at a time. Preferably the A-buffers are generated for only one pixel at a time. Another development relates to rendering a scan line of a graphic object image in a scan line renderer for a span of pixels lying between two x-order consecutive edges intersecting the scan line. For the span of pixels, this development maintains a subset of depths present in the rendering, the subset being those depths that are present on the span and being maintained in depth order (590) and subject to removal of depths where the corresponding depth is no longer active. In another development a compositing stack (6101-6107) of image layers to be rendered in a raster scan fashion is simplified. Rendering is operable over a run of two or more pixels within which a relationship between graphical objects contributing to the layers does not change. The layers are first divided into groups (6110, 6112, 6114), with each group being separated by a layer having variable transparency (6111, 6113). For a top one of the groups, layers having constant colour in the run are reduced to a single equivalent colour (6115, 6116, 6117) having an associated accumulated contribution. Many other developments are disclosed.