会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Non-destructive in-situ elemental profiling
    • 非破坏性原位元素分析
    • US07256399B2
    • 2007-08-14
    • US10907591
    • 2005-04-07
    • Siddhartha PandaMichael R. SieversRichard S. Wise
    • Siddhartha PandaMichael R. SieversRichard S. Wise
    • G01N23/227
    • G01N23/2273
    • A non-destructive in-situ elemental profiling of a layer in a set of layers method and system are disclosed. In one embodiment, a first emission of a plurality of photoelectrons is caused from the layer to be elementally profiled. An elemental profile of the layer is determined based on the emission. In another embodiment, a second emission of a plurality of photoelectrons is also received from the layer, and an elemental profile is determined by comparison of the resulting signals. A process that is altering the layer can then be controlled “on-the-fly” to obtain a desired material composition. Since the method can be employed in-situ and is non-destructive, it reduces turn around time and lowers wafer consumption. The invention also records the composition of all processed wafers, hence, removing the conventional statistical sampling problem.
    • 公开了一组层中的层的非破坏性原位元素分析方法和系统。 在一个实施例中,多个光电子的第一次发射是从该层进行元素分析。 基于发射确定层的元素分布。 在另一个实施例中,也从该层接收多个光电子的第二次发射,并且通过比较所得到的信号来确定元素分布。 然后可以“即时”控制改变层的方法以获得所需的材料组成。 由于该方法可以原位使用并且是非破坏性的,所以可以减少周转时间并降低晶片消耗。 本发明还记录了所有加工晶片的组成,因此,去除了常规统计抽样问题。
    • 3. 发明申请
    • METHOD FOR PRECISE TEMPERATURE CYCLING IN CHEMICAL / BIOCHEMICAL PROCESSES
    • 化学/生化过程中精确循环的方法
    • US20080118955A1
    • 2008-05-22
    • US11858280
    • 2007-09-20
    • Siddhartha PandaRichard S. Wise
    • Siddhartha PandaRichard S. Wise
    • C12P19/34B01J19/12
    • C12Q1/686B01L7/52B01L7/5255B01L2300/1872C12Q2523/313
    • A method for implementing a temperature cycling operation for a biochemical sample to be reacted includes applying an infrared (IR) heating source to the biochemical sample to be reacted at a first infrared wavelength selected so as to generate a first desired temperature for a first duration and produce a first desired reaction within the biochemical sample; following the first desired reaction, applying the infrared (IR) heating source to the biochemical sample at a second infrared wavelength selected so as to generate a second desired temperature for a second duration and produce a second desired reaction within the biochemical sample; and wherein the first and second wavelengths generated by the IR source are selected to be coincident with corresponding absorptive wavelengths of the biochemical sample so as to heat the biochemical sample without directly heating a fluid medium containing the biochemical sample.
    • 用于实施待反应的生物化学样品的温度循环操作的方法包括将红外(IR)加热源施加到生物化学样品以在被选择的第一红外波长处反应,以便产生第一期望的第一期望温度,以及 在生物化学样品中产生第一个所需的反应; 在第一期望的反应之后,以选择的第二红外波长将红外(IR)加热源施加到生物化学样品,以产生第二期望的第二期望温度,并在生化试样中产生第二所需反应; 并且其中由IR源产生的第一和第二波长被选择为与生物化学样品的相应吸收波长一致,以便加热生化样品而不直接加热含有生物化学样品的流体介质。
    • 6. 发明申请
    • ALIGNMENT TOLERANT SEMICONDUCTOR CONTACT AND METHOD
    • 对准耐磨半导体接触和方法
    • US20130200471A1
    • 2013-08-08
    • US13364976
    • 2012-02-02
    • André P. LabontéRichard S. Wise
    • André P. LabontéRichard S. Wise
    • H01L29/78H01L21/768
    • H01L21/28247H01L21/76814H01L21/76888H01L21/76897H01L29/66545
    • An alignment tolerant electrical contact is formed by providing a substrate on which is a first electrically conductive region (e.g., a MOSFET gate) having an upper surface, the first electrically conductive region being laterally bounded by a first dielectric region, applying a mask having an opening extending partly over a contact region (e.g., for the MOSFET source or drain) on the substrate and over a part of the upper surface, forming a passage through the first dielectric region extending to the contact region and the part of the upper surface, thereby exposing the contact region and the part of the upper surface, converting the part of the upper surface to a second dielectric region and filling the opening with a conductor making electrical contact with the contact region but electrically insulated from the electrically conductive region by the second dielectric region.
    • 通过提供其上具有上表面的第一导电区域(例如,MOSFET栅极)的衬底来形成对准容限的电接触,所述第一导电区域被第一介电区域横向界定,施加具有 部分地覆盖在衬底上并在上表面的一部分上的接触区域(例如,用于MOSFET源极或漏极)上的开口,形成通过延伸到接触区域和上表面的部分的第一介电区域的通道, 从而暴露接触区域和上表面的一部分,将上表面的一部分转换成第二电介质区域,并且用与接触区域电接触但与导电区域电绝缘的导体填充开口 电介质区域。
    • 7. 发明授权
    • Method for simultaneously forming features of different depths in a semiconductor substrate
    • 同时形成半导体衬底中不同深度的特征的方法
    • US08492280B1
    • 2013-07-23
    • US13465050
    • 2012-05-07
    • Habib HichriXi LiRichard S. Wise
    • Habib HichriXi LiRichard S. Wise
    • H01L21/311
    • H01L21/3065H01L21/76229H01L21/84H01L27/1087H01L29/66181
    • Embodiments of the invention may include first providing a stack of layers including a semiconductor substrate, a buried oxide layer on the semiconductor substrate, a semiconductor-on-insulator layer on the buried-oxide layer, a nitride layer on the semiconductor-on-insulator layer, and a silicon oxide layer on the nitride layer. A first opening and second opening with a smaller cross-sectional area than the first opening are then formed in the silicon oxide layer, the nitride layer, the semiconductor-on-insulator layer, and the buried-oxide layer. The first opening and the second opening are then etched with a first etching gas. The first opening and the second opening are then etched with a second etching gas, which includes the first etching gas and a halogenated silicon compound, for example, silicon tetrafluoride or silicon tetrachloride. In one embodiment, the first etching gas includes hydrogen bromide, nitrogen trifluoride, and oxygen.
    • 本发明的实施例可以包括首先提供包括半导体衬底,半导体衬底上的掩埋氧化物层,掩埋氧化物层上的绝缘体上半导体层,绝缘体上半导体上的氮化物层 层和氮化物层上的氧化硅层。 然后在氧化硅层,氮化物层,绝缘体上半导体层和掩埋氧化物层上形成具有比第一开口更小的横截面面积的第一开口和第二开口。 然后用第一蚀刻气体蚀刻第一开口和第二开口。 然后用第二蚀刻气体蚀刻第一开口和第二开口,第二蚀刻气体包括第一蚀刻气体和卤化硅化合物,例如四氟化硅或四氯化硅。 在一个实施方案中,第一蚀刻气体包括溴化氢,三氟化氮和氧。
    • 9. 发明授权
    • Dual metal and dual dielectric integration for metal high-k FETs
    • 金属高k FET的双金属和双电介质集成
    • US07943457B2
    • 2011-05-17
    • US12423236
    • 2009-04-14
    • Michael P. ChudzikWiliam K. HensonRashmi JhaYue LiangRavikumar RamachandranRichard S. Wise
    • Michael P. ChudzikWiliam K. HensonRashmi JhaYue LiangRavikumar RamachandranRichard S. Wise
    • H01L21/336
    • H01L29/517H01L21/28185H01L21/823842H01L21/823857H01L29/49H01L29/7833
    • The present invention, in one embodiment, provides a method of forming a semiconductor device that includes providing a substrate including a first conductivity type region and a second conductivity type region; forming a gate stack including a gate dielectric atop the first conductivity type region and the second conductivity type region of the substrate and a first metal gate conductor overlying the high-k gate dielectric; removing a portion of the first metal gate conductor that is present in the first conductivity type region to expose the gate dielectric present in the first conductivity type region; applying a nitrogen based plasma to the substrate, wherein the nitrogen based plasma nitrides the gate dielectric that is present in the first conductivity type region and nitrides the first metal gate conductor that is present in the second conductivity type region; and forming a second metal gate conductor overlying at least the gate dielectric that is present in the first conductivity type region.
    • 在一个实施例中,本发明提供一种形成半导体器件的方法,该半导体器件包括提供包括第一导电类型区域和第二导电类型区域的衬底; 在所述基板的第一导电类型区域和所述第二导电类型区域之上形成包括栅极电介质的栅极堆叠和覆盖所述高k栅极电介质的第一金属栅极导体; 去除存在于第一导电类型区域中的第一金属栅极导体的一部分以暴露存在于第一导电类型区域中的栅极电介质; 将氮基等离子体施加到所述基板,其中所述氮基等离子体氮化存在于所述第一导电类型区域中的所述栅极电介质,并且氮化所述第二导电类型区域中存在的所述第一金属栅极导体; 以及形成覆盖存在于第一导电类型区域中的至少栅极电介质的第二金属栅极导体。