会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Apparatus, system, and method for optimizing gamma curves for digital image devices
    • 用于优化数字图像设备的伽马曲线的装置,系统和方法
    • US07545421B2
    • 2009-06-09
    • US11146484
    • 2005-06-06
    • Shuxue QuanAndrew Chinchuan ChiuXiaoyun Jiang
    • Shuxue QuanAndrew Chinchuan ChiuXiaoyun Jiang
    • H04N5/202H04N17/00H04N17/02
    • H04N9/69H04N1/6077H04N1/6083
    • An apparatus, system, and method provide optimization of color space conversion using a joint quality metric representing differences between reference human visual representations and converted device captured image representations in a perceptual uniform color space, where the conversion includes transforming a nonstandard color space (RGB) to a perceptual standard color space (sRGB) and where the joint quality metric includes a color portion, a noise portion, and a contrast portion. An optical sensor produces a digital reference signal when capturing an image of a reference source such as a Macbeth ColorChecker color rendition chart. After white balancing and color correcting the digital reference signal, the gamma curve parameters are determined by minimizing the joint quality metric which is based on differences, within a uniform perceptual color space such as CIELAB, between the gamma curve compensated signal and the standard values for the reference source. The noise portion and contrast portion take into account the noise and the contrast of the gamma curve compensated signal resulting in a gamma curve parameter that is optimized with respect to color, noise, and contrast.
    • 装置,系统和方法使用表示参考人类视觉表示之间的差异的联合质量度量和感知统一色彩空间中的转换器件捕获图像表示来提供色彩空间转换的优化,其中转换包括变换非标准颜色空间(RGB) 到感知标准色彩空间(sRGB),并且其中联合质量度量包括颜色部分,噪声部分和对比度部分。 当捕获诸如Macbeth ColorChecker颜色再现图表的参考源的图像时,光学传感器产生数字参考信号。 在白平衡和颜色校正数字参考信号之后,伽马曲线参数通过最小化基于伽马曲线补偿信号和标准值之间的统一感知色彩空间(例如CIELAB)内的差异的联合质量度量来确定 参考来源。 噪声部分和对比部分考虑了伽马曲线补偿信号的噪声和对比度,导致相对于颜色,噪声和对比度优化的伽马曲线参数。
    • 2. 发明授权
    • Video sensor-based automatic region-of-interest detection
    • 基于视频传感器的自动感兴趣区域检测
    • US08208758B2
    • 2012-06-26
    • US11363820
    • 2006-02-28
    • Haohong WangShuxue QuanKhaled Helmi El-MalehChinchuan Andrew ChiuXiaoyun Jiang
    • Haohong WangShuxue QuanKhaled Helmi El-MalehChinchuan Andrew ChiuXiaoyun Jiang
    • G06K9/20
    • G06K9/00234H04N1/628H04N9/643
    • The disclosure is directed to techniques for region-of-interest (ROI) video processing based on low-complexity automatic ROI detection within video frames of video sequences. The low-complexity automatic ROI detection may be based on characteristics of video sensors within video communication devices. In other cases, the low-complexity automatic ROI detection may be based on motion information for a video frame and a different video frame of the video sequence. The disclosed techniques include a video processing technique capable of tuning and enhancing video sensor calibration, camera processing, ROI detection, and ROI video processing within a video communication device based on characteristics of a specific video sensor. The disclosed techniques also include a sensor-based ROI detection technique that uses video sensor statistics and camera processing side-information to improve ROI detection accuracy. The disclosed techniques also include a motion-based ROI detection technique that uses motion information obtained during motion estimation in video processing.
    • 本公开涉及基于视频序列的视频帧内的低复杂度自动ROI检测的感兴趣区域(ROI)视频处理技术。 低复杂度的自动ROI检测可以基于视频通信设备内的视频传感器的特性。 在其他情况下,低复杂度自动ROI检测可以基于视频帧的运动信息和视频序列的不同视频帧。 所公开的技术包括基于特定视频传感器的特性,能够在视频通信设备内调整和增强视频传感器校准,相机处理,ROI检测和ROI视频处理的视频处理技术。 所公开的技术还包括基于传感器的ROI检测技术,其使用视频传感器统计和相机处理侧信息来提高ROI检测精度。 所公开的技术还包括基于运动的ROI检测技术,其使用在视频处理中的运动估计期间获得的运动信息。
    • 4. 发明授权
    • Video frame motion-based automatic region-of-interest detection
    • 基于视频帧运动的自动感兴趣区域检测
    • US08019170B2
    • 2011-09-13
    • US11364285
    • 2006-02-28
    • Haohong WangShuxue QuanKhaled Helmi El-MalehChinchuan Andrew ChiuXiaoyun Jiang
    • Haohong WangShuxue QuanKhaled Helmi El-MalehChinchuan Andrew ChiuXiaoyun Jiang
    • G06K9/36G06K9/00H04N11/02
    • G06K9/00234H04N19/17H04N19/61
    • The disclosure is directed to techniques for region-of-interest (ROI) video processing based on low-complexity automatic ROI detection within video frames of video sequences. The low-complexity automatic ROI detection may be based on characteristics of video sensors within video communication devices. In other cases, the low-complexity automatic ROI detection may be based on motion information for a video frame and a different video frame of the video sequence. The disclosed techniques include a video processing technique capable of tuning and enhancing video sensor calibration, camera processing, ROI detection, and ROI video processing within a video communication device based on characteristics of a specific video sensor. The disclosed techniques also include a sensor-based ROI detection technique that uses video sensor statistics and camera processing side-information to improve ROI detection accuracy. The disclosed techniques also include a motion-based ROI detection technique that uses motion information obtained during motion estimation in video processing.
    • 本公开涉及基于视频序列的视频帧内的低复杂度自动ROI检测的感兴趣区域(ROI)视频处理技术。 低复杂度的自动ROI检测可以基于视频通信设备内的视频传感器的特性。 在其他情况下,低复杂度自动ROI检测可以基于视频帧的运动信息和视频序列的不同视频帧。 所公开的技术包括基于特定视频传感器的特性,能够在视频通信设备内调整和增强视频传感器校准,相机处理,ROI检测和ROI视频处理的视频处理技术。 所公开的技术还包括基于传感器的ROI检测技术,其使用视频传感器统计和相机处理侧信息来提高ROI检测精度。 所公开的技术还包括基于运动的ROI检测技术,其使用在视频处理中的运动估计期间获得的运动信息。
    • 7. 发明申请
    • Video frame motion-based automatic region-of-interest detection
    • 基于视频帧运动的自动感兴趣区域检测
    • US20070076957A1
    • 2007-04-05
    • US11364285
    • 2006-02-28
    • Haohong WangShuxue QuanKhaled El-MalehChlachuan ChiuXiaoyun Jiang
    • Haohong WangShuxue QuanKhaled El-MalehChlachuan ChiuXiaoyun Jiang
    • G06K9/46G06K9/00G06K9/34
    • G06K9/00234H04N19/17H04N19/61
    • The disclosure is directed to techniques for region-of-interest (ROI) video processing based on low-complexity automatic ROI detection within video frames of video sequences. The low-complexity automatic ROI detection may be based on characteristics of video sensors within video communication devices. In other cases, the low-complexity automatic ROI detection may be based on motion information for a video frame and a different video frame of the video sequence. The disclosed techniques include a video processing technique capable of tuning and enhancing video sensor calibration, camera processing, ROI detection, and ROI video processing within a video communication device based on characteristics of a specific video sensor. The disclosed techniques also include a sensor-based ROI detection technique that uses video sensor statistics and camera processing side-information to improve ROI detection accuracy. The disclosed techniques also include a motion-based ROI detection technique that uses motion information obtained during motion estimation in video processing.
    • 本公开涉及基于视频序列的视频帧内的低复杂度自动ROI检测的感兴趣区域(ROI)视频处理技术。 低复杂度的自动ROI检测可以基于视频通信设备内的视频传感器的特性。 在其他情况下,低复杂度自动ROI检测可以基于视频帧的运动信息和视频序列的不同视频帧。 所公开的技术包括基于特定视频传感器的特性,能够在视频通信设备内调整和增强视频传感器校准,相机处理,ROI检测和ROI视频处理的视频处理技术。 所公开的技术还包括基于传感器的ROI检测技术,其使用视频传感器统计和相机处理侧信息来提高ROI检测精度。 所公开的技术还包括基于运动的ROI检测技术,其使用在视频处理中的运动估计期间获得的运动信息。