会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Nanotip Electrode Electroluminescence Device
    • 纳米线电极电致发光器件
    • US20080191636A1
    • 2008-08-14
    • US12042983
    • 2008-03-05
    • Sheng Teng HsuFengyan ZhangGregory M. SteckerRobert A. Barrowcliff
    • Sheng Teng HsuFengyan ZhangGregory M. SteckerRobert A. Barrowcliff
    • H05B41/16H01J1/62
    • H05B33/145
    • An electroluminescence (EL) device and a method are provided for fabricating said device with a nanotip electrode. The method comprises: forming a bottom electrode with nanotips; forming a Si phosphor layer adjacent the nanotips; and, forming a transparent top electrode. The Si phosphor layer is interposed between the bottom and top electrodes. The nanotips may have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. Typically, the nanotips are formed from iridium oxide (IrOx) nanotips. A MOCVD process forms the Ir bottom electrode. The IrOx nanotips are grown from the Ir. In one aspect, the Si phosphor layer is a SRSO layer. In response to an SRSO annealing step, nanocrystalline SRSO is formed with nanocrystals having a size in the range of 1 to 10 nm.
    • 提供了一种电致发光(EL)器件和用于制造具有纳米尖端电极的所述器件的方法。 该方法包括:形成具有纳米尖端的底部电极; 在所述纳米尖端附近形成Si磷光体层; 并形成透明的顶部电极。 Si荧光体层介于底部和顶部电极之间。 纳米尖端可以具有约50纳米或更小的尖端基部尺寸,5至50nm范围内的尖端高度,以及每平方毫米大于100纳米尖端的纳米密度密度。 通常,纳米尖端由氧化铱(IrOx)纳米尖端形成。 MOCVD工艺形成Ir底部电极。 IrOx纳米尖嘴从Ir生长。 在一个方面,Si磷光体层是SRSO层。 响应于SRSO退火步骤,形成具有1至10nm范围内的尺寸的纳米晶体的纳米晶SRSO。
    • 2. 发明授权
    • Silicon phosphor electroluminescence device with nanotip electrode
    • 具有纳米尖电极的硅荧光体电致发光器件
    • US07364924B2
    • 2008-04-29
    • US11061946
    • 2005-02-17
    • Sheng Teng HsuFengyan ZhangGregory M. SteckerRobert A. Barrowcliff
    • Sheng Teng HsuFengyan ZhangGregory M. SteckerRobert A. Barrowcliff
    • H01L21/00
    • H05B33/145
    • An electroluminescence (EL) device and a method are provided for fabricating said device with a nanotip electrode. The method comprises: forming a bottom electrode with nanotips; forming a Si phosphor layer adjacent the nanotips; and, forming a transparent top electrode. The Si phosphor layer is interposed between the bottom and top electrodes. The nanotips may have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. Typically, the nanotips are formed from iridium oxide (IrOx) nanotips. A MOCVD process forms the Ir bottom electrode. The IrOx nanotips are grown from the Ir. In one aspect, the Si phosphor layer is a SRSO layer. In response to an SRSO annealing step, nanocrystalline SRSO is formed with nanocrystals having a size in the range of 1 to 10 nm.
    • 提供了一种电致发光(EL)器件和用于制造具有纳米尖端电极的所述器件的方法。 该方法包括:形成具有纳米尖端的底部电极; 在所述纳米尖端附近形成Si磷光体层; 并形成透明的顶部电极。 Si荧光体层介于底部和顶部电极之间。 纳米尖端可以具有约50纳米或更小的尖端基部尺寸,5至50nm范围内的尖端高度,以及每平方毫米大于100纳米尖端的纳米密度密度。 通常,纳米尖端由氧化铱(IrOx)纳米尖端形成。 MOCVD工艺形成Ir底部电极。 IrOx纳米尖嘴从Ir生长。 在一个方面,Si磷光体层是SRSO层。 响应于SRSO退火步骤,形成具有1至10nm范围内的尺寸的纳米晶体的纳米晶SRSO。
    • 3. 发明授权
    • Non-volatile memory resistor cell with nanotip electrode
    • 带纳米尖电极的非易失性存储器电阻单元
    • US07208372B2
    • 2007-04-24
    • US11039544
    • 2005-01-19
    • Sheng Teng HsuFengyan ZhangGregory M. SteckerRobert A. Barrowcliff
    • Sheng Teng HsuFengyan ZhangGregory M. SteckerRobert A. Barrowcliff
    • H01L21/06H01L21/461
    • H01L27/101H01L45/04H01L45/1233H01L45/1273H01L45/147H01L45/16H01L45/1675
    • A non-volatile memory resistor cell with a nanotip electrode, and corresponding fabrication method are provided. The method comprises: forming a first electrode with nanotips; forming a memory resistor material adjacent the nanotips; and, forming a second electrode adjacent the memory resistor material, where the memory resistor material is interposed between the first and second electrodes. Typically, the nanotips are iridium oxide (IrOx) and have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. In one aspect, the substrate material can be silicon, silicon oxide, silicon nitride, or a noble metal. A metalorganic chemical vapor deposition (MOCVD) process is used to deposit Ir. The IrOx nanotips are grown from the deposited Ir.
    • 提供了具有纳米尖端电极的非易失性存储器电阻单元及相应的制造方法。 该方法包括:形成具有纳米尖端的第一电极; 在所述纳米尖端附近形成记忆电阻材料; 并且形成与所述存储电阻材料相邻的第二电极,其中所述存储电阻材料置于所述第一和第二电极之间。 通常,纳米针是氧化铱(IrOx),并且具有约50纳米或更小的尖端基底尺寸,在5至50nm范围内的尖端高度,以及每平方微米大于100纳米尖端的纳米密度密度。 一方面,衬底材料可以是硅,氧化硅,氮化硅或贵金属。 使用金属有机化学气相沉积(MOCVD)工艺沉积Ir。 IrOx纳米尖端从沉积的Ir生长。
    • 4. 发明授权
    • Iridium oxide nanostructure
    • 氧化铱纳米结构
    • US07053403B1
    • 2006-05-30
    • US11339876
    • 2006-01-26
    • Fengyan ZhangGregory M. SteckerRobert A. BarrowcliffSheng Teng Hsu
    • Fengyan ZhangGregory M. SteckerRobert A. BarrowcliffSheng Teng Hsu
    • H01L29/10H01L29/12
    • H01L21/31111B81C1/00111B82Y10/00
    • A method is provided for patterning iridium oxide (IrOx) nanostructures. The method comprises: forming a substrate first region adjacent a second region; growing IrOx nanostructures from a continuous IrOx film overlying the first region; simultaneously growing IrOx nanostructures from a non-continuous IrOx film overlying the second region; selectively etching areas of the second region exposed by the non-continuous IrOx film; and, lifting off the IrOx nanostructures overlying the second region. Typically, the first region is formed from a first material and the second region from a second material, different than the first material. For example, the first material can be a refractory metal, or refractory metal oxide. The second material can be SiOx. The step of selectively etching areas of the second region exposed by the non-continuous IrOx film includes exposing the substrate to an etchant that is more reactive with the second material than the IrOx.
    • 提供了用于构图氧化铱(IrOx)纳米结构的方法。 该方法包括:在第二区域附近形成衬底第一区域; 从覆盖第一区域的连续IrOx膜生长IrOx纳米结构; 同时从覆盖第二区域的非连续IrOx膜生长IrOx纳米结构; 选择性地蚀刻由非连续IrOx膜暴露的第二区域的区域; 并提升覆盖第二区域的IrOx纳米结构。 通常,第一区域由第一材料形成,第二区域由不同于第一材料的第二材料形成。 例如,第一种材料可以是难熔金属或难熔金属氧化物。 第二种材料可以是SiOx。 选择性地蚀刻由非连续IrOx膜暴露的第二区域的区域的步骤包括将衬底暴露于与IrOx比第二材料更具反应性的蚀刻剂。
    • 5. 发明授权
    • Iridium oxide nanostructure patterning
    • 氧化铱纳米结构图案
    • US07022621B1
    • 2006-04-04
    • US11013804
    • 2004-12-15
    • Fengyan ZhangGregory M. SteckerRobert A. BarrowcliffSheng Teng Hsu
    • Fengyan ZhangGregory M. SteckerRobert A. BarrowcliffSheng Teng Hsu
    • H01L21/461
    • H01L21/31111B81C1/00111B82Y10/00
    • A method is provided for patterning iridium oxide (IrOx) nanostructures. The method comprises: forming a substrate first region adjacent a second region; growing IrOx nanostructures from a continuous IrOx film overlying the first region; simultaneously growing IrOx nanostructures from a non-continuous IrOx film overlying the second region; selectively etching areas of the second region exposed by the non-continuous IrOx film; and, lifting off the IrOx nanostructures overlying the second region. Typically, the first region is formed from a first material and the second region from a second material, different than the first material. For example, the first material can be a refractory metal, or refractory metal oxide. The second material can be SiOx. The step of selectively etching areas of the second region exposed by the non-continuous IrOx film includes exposing the substrate to an etchant that is more reactive with the second material than the IrOx.
    • 提供了用于构图氧化铱(IrOx)纳米结构的方法。 该方法包括:在第二区域附近形成衬底第一区域; 从覆盖第一区域的连续IrOx膜生长IrOx纳米结构; 同时从覆盖第二区域的非连续IrOx膜生长IrOx纳米结构; 选择性地蚀刻由非连续IrOx膜暴露的第二区域的区域; 并提升覆盖第二区域的IrOx纳米结构。 通常,第一区域由第一材料形成,第二区域由不同于第一材料的第二材料形成。 例如,第一种材料可以是难熔金属或难熔金属氧化物。 第二种材料可以是SiOx。 选择性地蚀刻由非连续IrOx膜暴露的第二区域的区域的步骤包括将衬底暴露于与IrOx比第二材料更具反应性的蚀刻剂。
    • 6. 发明授权
    • Nanotip electrode electroluminescence device
    • 纳米电极电致发光器件
    • US08242482B2
    • 2012-08-14
    • US12042983
    • 2008-03-05
    • Sheng Teng HsuFengyan ZhangGregory M. SteckerRobert A. Barrowcliff
    • Sheng Teng HsuFengyan ZhangGregory M. SteckerRobert A. Barrowcliff
    • H01L31/072
    • H05B33/145
    • An electroluminescence (EL) device and a method are provided for fabricating said device with a nanotip electrode. The method comprises: forming a bottom electrode with nanotips; forming a Si phosphor layer adjacent the nanotips; and, forming a transparent top electrode. The Si phosphor layer is interposed between the bottom and top electrodes. The nanotips may have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. Typically, the nanotips are formed from iridium oxide (IrOx) nanotips. A MOCVD process forms the Ir bottom electrode. The IrOx nanotips are grown from the Ir. In one aspect, the Si phosphor layer is a SRSO layer. In response to an SRSO annealing step, nanocrystalline SRSO is formed with nanocrystals having a size in the range of 1 to 10 nm.
    • 提供了一种电致发光(EL)器件和用于制造具有纳米尖端电极的所述器件的方法。 该方法包括:用纳米尖端形成底部电极; 在所述纳米尖端附近形成Si磷光体层; 并形成透明的顶部电极。 Si荧光体层介于底部和顶部电极之间。 纳米尖端可以具有约50纳米或更小的尖端基部尺寸,5至50nm范围内的尖端高度,以及每平方毫米大于100纳米尖端的纳米密度密度。 通常,纳米尖端由氧化铱(IrOx)纳米尖端形成。 MOCVD工艺形成Ir底部电极。 IrOx纳米尖嘴从Ir生长。 在一个方面,Si磷光体层是SRSO层。 响应于SRSO退火步骤,形成具有1至10nm范围内的尺寸的纳米晶体的纳米晶SRSO。
    • 8. 发明授权
    • Iridium oxide nanotubes and method for forming same
    • 氧化铱纳米管及其形成方法
    • US07098144B2
    • 2006-08-29
    • US10971280
    • 2004-10-21
    • Fengyan ZhangRobert A. BarrowcliffGregory M. SteckerSheng Teng Hsu
    • Fengyan ZhangRobert A. BarrowcliffGregory M. SteckerSheng Teng Hsu
    • H01L21/302
    • B82Y10/00B82Y30/00C30B25/00C30B29/16C30B29/605Y10S977/811Y10S977/84
    • A method is provided for forming iridium oxide (IrOx) nanotubes. The method comprises: providing a substrate; introducing a (methylcyclopentadienyl)(1,5-cyclooctadiene)iridium(I) precursor; introducing oxygen as a precursor reaction gas; establishing a final pressure in the range of 1 to 50 Torr; establishing a substrate, or chamber temperature in the range of 200 to 500 degrees C.; and using a metalorganic chemical vapor deposition (MOCVD) process, growing IrOx hollow nanotubes from the substrate surface. Typically, the (methylcyclopentadienyl)(1,5-cyclooctadiene)iridium(I) precursor is initially heated in an ampule to a first temperature in the range of 60 to 90 degrees C., and the first temperature is maintained in the transport line introducing the precursor. The precursor may be mixed with an inert carrier gas such as Ar, or the oxygen precursor reaction gas may be used as the carrier.
    • 提供了形成氧化铱(IrOx)纳米管的方法。 该方法包括:提供衬底; 引入(甲基环戊二烯基)(1,5-环辛二烯)铱(I)前体; 引入氧气作为前体反应气体; 确定1至50乇范围内的最终压力; 建立基板,或室温在200至500摄氏度的范围内。 并使用金属有机化学气相沉积(MOCVD)工艺,从衬底表面生长IrOx中空纳米管。 通常,(甲基环戊二烯基)(1,5-环辛二烯)铱(I)前体最初在安瓿中加热至60至90℃的第一温度,第一温度保持在输送线 的前身。 前体可以与惰性载气如Ar混合,也可以使用氧前体反应气体作为载体。