会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Non-destructive ambient dynamic mode AFM amplitude versus distance curve acquisition
    • 非破坏性环境动态模式AFM幅度与距离曲线采集
    • US07963153B2
    • 2011-06-21
    • US11954858
    • 2007-12-12
    • Chikuang Charles WangBiao LiuYuri S. Uritsky
    • Chikuang Charles WangBiao LiuYuri S. Uritsky
    • G01B5/28
    • G01Q60/32G01Q10/065
    • A method, a system and a computer readable medium for dynamic mode AFM amplitude versus distance curve acquisition. In an embodiment, a constant force feedback mechanism is enabled prior to the first time an AFM probe tip contacts a sample. The feedback mechanism setpoint is iteratively reduced while at least phase and amplitude of the probe tip are recorded as a function of the relative z-height of a cantilever coupled to the probe tip. The feedback mechanism setpoint may be repeatedly swept between upper and lower bounds to average out drift between the cantilever and sample. Upon detecting a threshold, an absolute tip-to-sample distance is determined and correlated to the relative z-heights. The amplitude and phase data recorded prior to tip-sample contact is then determined as a function of absolute tip-to-sample distance.
    • 一种用于动态模式AFM幅度与距离曲线采集的方法,系统和计算机可读介质。 在一个实施例中,在第一次AFM探针尖端接触样品之前,能够使能恒力反馈机构。 反馈机构设定值被迭代地减少,而至少探针尖端的相位和幅度被记录为耦合到探针尖端的悬臂的相对z高度的函数。 反馈机制设定点可以在上限和下限之间重复扫描,以平均出悬臂与样品之间的漂移。 在检测到阈值时,确定绝对的尖端到样本的距离并将其与相对的z高度相关联。 然后确定尖端 - 样品接触之前记录的幅度和相位数据作为绝对尖端到样品距离的函数。
    • 3. 发明申请
    • NON-DESTRUCTIVE AMBIENT DYNAMIC MODE AFM AMPLITUDE VERSUS DISTANCE CURVE ACQUISITION
    • 非破坏性环境动态模式AFM幅度VERSUS DISTANCE CURVE ACQUISITION
    • US20090139315A1
    • 2009-06-04
    • US11954858
    • 2007-12-12
    • Chikuang Charles WangBiao LiuYuri S. Uritsky
    • Chikuang Charles WangBiao LiuYuri S. Uritsky
    • G12B21/08
    • G01Q60/32G01Q10/065
    • A method, a system and a computer readable medium for dynamic mode AFM amplitude versus distance curve acquisition. In an embodiment, a constant force feedback mechanism is enabled prior to the first time an AFM probe tip contacts a sample. The feedback mechanism setpoint is iteratively reduced while at least phase and amplitude of the probe tip are recorded as a function of the relative z-height of a cantilever coupled to the probe tip. The feedback mechanism setpoint may be repeatedly swept between upper and lower bounds to average out drift between the cantilever and sample. Upon detecting a threshold, an absolute tip-to-sample distance is determined and correlated to the relative z-heights. The amplitude and phase data recorded prior to tip-sample contact is then determined as a function of absolute tip-to-sample distance.
    • 一种用于动态模式AFM幅度与距离曲线采集的方法,系统和计算机可读介质。 在一个实施例中,在第一次AFM探针尖端接触样品之前,能够使能恒力反馈机构。 反馈机构设定值被迭代地减少,而至少探针尖端的相位和幅度被记录为耦合到探针尖端的悬臂的相对z高度的函数。 反馈机制设定点可以在上限和下限之间重复扫描,以平均出悬臂与样品之间的漂移。 在检测到阈值时,确定绝对的尖端到样本的距离并将其与相对的z高度相关联。 然后确定尖端 - 样品接触之前记录的幅度和相位数据作为绝对尖端到样品距离的函数。
    • 4. 发明授权
    • Particle analysis of notched wafers
    • 缺口晶圆的粒子分析
    • US5381004A
    • 1995-01-10
    • US115482
    • 1993-08-31
    • Yuri S. UritskyHarry Q. Lee
    • Yuri S. UritskyHarry Q. Lee
    • G01N15/00G01N15/10H01J37/256H01L21/66H01J37/26G01B11/00
    • H01L22/20H01J37/256H01L22/12H01L2223/54453
    • A method for reducing targeting errors that arise when trying to locate contaminant particles on a notched semiconductor wafer using a high-magnification imaging device, based on estimates of wafer feature positions obtained from a scanning device. The present invention scans a notched semiconductor wafer with a scanning device to obtain scanning device coordinates for the positions of: (i) the wafer center; (ii) the wafer notch; and (iii) contaminant particles on the wafer. Next, the present invention finds the wafer notch and wafer center with an imaging device and obtains their estimated imaging device coordinates. Subsequently, the present invention calculates estimated transformation parameters for a coordinate transformation between the coordinate systems of the scanning device and the imaging device based on the scamping device coordinates and the estimated imaging device coordinates of the wafer notch and the wafer center. Finally, the present invention transforms the scanning device coordinates of the particles on the wafer to estimated imaging device coordinates using the estimated transformation parameters.
    • 一种用于减少基于从扫描装置获得的晶片特征位置的估计来尝试使用高倍率成像装置在缺口半导体晶片上定位污染物颗粒时产生的瞄准误差的方法。 本发明用扫描装置扫描缺口半导体晶片,以得到以下位置的扫描装置坐标:(i)晶片中心; (ii)晶片切口; 和(iii)晶片上的污染物颗粒。 接下来,本发明利用成像装置找到晶片切口和晶片中心,并获得其估计的成像装置坐标。 随后,本发明基于扫描装置坐标和晶片切口和晶片中心的估计成像装置坐标来计算扫描装置的坐标系与成像装置之间的坐标变换的估计变换参数。 最后,本发明使用估计的变换参数将晶片上的颗粒的扫描装置坐标转换为估计的成像装置坐标。
    • 6. 发明授权
    • Method for automatically establishing a wafer coordinate system
    • 自动建立晶圆坐标系的方法
    • US5497007A
    • 1996-03-05
    • US379246
    • 1995-01-27
    • Yuri S. UritskyHarry Q. Lee
    • Yuri S. UritskyHarry Q. Lee
    • G01Q30/02H01J37/304G01B21/04
    • H01J37/3045H01J2237/2442H01J2237/2594
    • An automated method for establishing a wafer coordinate system for a wafer characterization system. Specifically, under computer control, a high-magnification imaging system images a wafer at a low, initial magnification level. From this imaging process, the method first determines the location of the center of the semiconductor wafer mounted within the imaging system and then determines the wafer orientation therein. The method then repeats the imaging process at increased magnification levels until a desired degree of magnification is used to accurately define the location of the wafer center and the wafer orientation. Together the wafer center and orientation define a wafer coordinate system. This wafer coordinate system is then related to the coordinate system of the imaging system by a coordinate system transformation. As such, once the coordinate systems are related, the imaging system can quickly and accurately determine any point on a wafer. The method uses various wafer edge locations to determine the wafer center location and wafer orientation. These edge locations are determined by either: (1) using a scanning electron microscope in conjunction with an image processing technique, or (2) using an energy dispersive x-ray detector to detect changes in the SiK.sub..alpha. line intensity.
    • 一种用于建立晶片表征系统的晶片坐标系的自动化方法。 具体地说,在计算机控制下,高倍率成像系统以低的初始放大级别对晶片进行成像。 从该成像过程中,该方法首先确定安装在成像系统内的半导体晶片的中心的位置,然后确定其中的晶片取向。 该方法然后以增加的放大级别重复成像过程,直到使用期望的放大倍率来精确地限定晶片中心和晶片取向的位置。 晶片中心和方向一起定义晶片坐标系。 然后,该晶片坐标系通过坐标系变换与成像系统的坐标系相关。 因此,一旦坐标系相关,成像系统可以快速准确地确定晶片上的任何点。 该方法使用各种晶片边缘位置来确定晶片中心位置和晶片取向。 这些边缘位置可以通过以下方式确定:(1)使用扫描电子显微镜结合图像处理技术,或者(2)使用能量色散X射线检测器来检测SiKα线强度的变化。
    • 8. 发明授权
    • Multiple-scan method for wafer particle analysis
    • 晶圆颗粒分析的多重扫描方法
    • US5422724A
    • 1995-06-06
    • US116232
    • 1993-08-31
    • Patrick D. KinneyYuri S. UritskyHarry Q. Lee
    • Patrick D. KinneyYuri S. UritskyHarry Q. Lee
    • G01B11/00G01N15/00G01R31/305G01R31/307H01J37/22H01L21/66
    • G01R31/305G01R31/307H01L22/20H01L22/12
    • A method for reducing targeting errors encountered when trying to locate contaminant particles in a high-magnification imaging device, based on estimates of the particle positions obtained from a scanning device. The method of the invention includes scanning a semiconductor wafer in a scanning device, then preferably moving the wafer to a different orientation, and scanning the wafer again, to obtain at least two sets of particle coordinates that may differ slightly because of uncertainties in the scanning process. The multiple sets of coordinates are averaged to reduce the targeting errors, but only after transforming the coordinates to a common coordinate system. The transformation step includes computing transformation parameters for each possible pair of particles detected in at least two scans, averaging the results, and then transforming all of the particle coordinates to the common coordinate system. Optionally, the method may include discarding any transformation parameters that deviate too far from the average, and then computing the average transformation parameters again.
    • 基于从扫描装置获得的粒子位置的估计,减少在高倍率成像装置中定位污染物颗粒时遇到的瞄准误差的方法。 本发明的方法包括在扫描装置中扫描半导体晶片,然后优选地将晶片移动到不同的取向,并再次扫描晶片,以获得由于扫描中的不确定性而可能略有不同的至少两组粒子坐标 处理。 对多组坐标进行平均以减少目标误差,但仅在将坐标转换为公共坐标系之后。 变换步骤包括计算在至少两次扫描中检测到的每个可能的一对颗粒的变换参数,对结果求平均值,然后将所有粒子坐标转换为公共坐标系。 可选地,该方法可以包括丢弃偏离平均值太远的任何变换参数,然后再次计算平均变换参数。
    • 9. 发明授权
    • Method of particle analysis on a mirror wafer
    • 在镜片上进行粒子分析的方法
    • US5267017A
    • 1993-11-30
    • US886541
    • 1992-05-20
    • Yuri S. UritskyHarry Q. LeePatrick D. KinneyKang-Ho Ahn
    • Yuri S. UritskyHarry Q. LeePatrick D. KinneyKang-Ho Ahn
    • G01R31/305G01R31/307G01B11/00
    • G01R31/305G01R31/307
    • A method for reducing targeting errors encountered when trying to locate contaminant particles in a high-magnification imaging device, based on estimates of the particle positions obtained from a scanning device. The method of the invention uses three techniques separately and in combination. The first technique includes selecting at least three reference particles, to provide multiple unique pairs of reference particles for computation of an averaged set of coordinate transformation parameters, used to transform particle position coordinates from the coordinate system of the scanning device to the coordinate system of the imaging device. The averaged transformation parameters result in much smaller targeting errors between the estimated and actual positions of the particles. The targeting errors are further reduced by the use of multiple scans of the scanning device. In a third technique, accumulated reference particle targeting errors observed in prior processing of other wafers are used to reduce these targeting errors when processing a new wafer.
    • 基于从扫描装置获得的粒子位置的估计,减少在高倍率成像装置中定位污染物颗粒时遇到的瞄准误差的方法。 本发明的方法分别使用三种技术组合。 第一技术包括选择至少三个参考粒子,以提供用于计算平均坐标变换参数集合的多个独特的参考粒子对,用于将粒子位置坐标从扫描装置的坐标系转换为坐标系的坐标系 成像装置。 平均变换参数导致粒子的估计位置和实际位置之间的目标误差小得多。 通过使用扫描设备的多次扫描,进一步减少了定位错误。 在第三种技术中,在处理新晶片时,使用在其它晶片的先前处理中观察到的累积参考粒子瞄准误差来减少这些瞄准误差。