会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Taxonomy Editor
    • 分类编辑器
    • US20110214080A1
    • 2011-09-01
    • US12713190
    • 2010-02-26
    • Sanjay AgrawalSurajit ChaudhuriVenkatesh GantiYuri Siradeghyan
    • Sanjay AgrawalSurajit ChaudhuriVenkatesh GantiYuri Siradeghyan
    • G06F3/048
    • G06F17/30734
    • This patent application relates to taxonomy editing. One implementation involves a taxonomy editor configured to generate a visual representation of a taxonomy associated with a set of scientific papers. The taxonomy editor includes a properties module configured to identify properties relating to an individual node of the taxonomy and a statistics module configured to determine trends relating to the individual node. The taxonomy editor further includes a similarity module configured to evaluate keyword similarity relative to individual scientific papers associated with the individual node. The taxonomy editor also includes a suggestion module configured to utilize the properties, the trends and the keyword similarity to identify potential modifications to the taxonomy. The taxonomy editor is further configured to present at least some of the potential modifications, the properties, the trends, and the keyword similarity concurrently with the visual representation of the taxonomy.
    • 该专利申请涉及分类编辑。 一个实现涉及分类编辑器,其被配置为生成与一组科学论文相关联的分类法的视觉表示。 分类编辑器包括被配置为识别与分类法的单个节点相关的属性的属性模块,以及被配置为确定与各个节点相关的趋势的统计模块。 分类编辑器还包括相似度模块,其被配置为评估与单个节点相关联的各个科学论文的关键字相似度。 分类编辑器还包括配置为利用属性,趋势和关键字相似性的建议模块来识别对分类法的潜在修改。 分类编辑器还被配置为与分类法的视觉表示同时呈现至少一些潜在的修改,属性,趋势和关键词相似性。
    • 2. 发明授权
    • Taxonomy editor
    • 分类编辑器
    • US08527893B2
    • 2013-09-03
    • US12713190
    • 2010-02-26
    • Sanjay AgrawalSurajit ChaudhuriVenkatesh GantiYuri Siradeghyan
    • Sanjay AgrawalSurajit ChaudhuriVenkatesh GantiYuri Siradeghyan
    • G06F3/048
    • G06F17/30734
    • This patent application relates to taxonomy editing. One implementation involves a taxonomy editor configured to generate a visual representation of a taxonomy associated with a set of scientific papers. The taxonomy editor includes a properties module configured to identify properties relating to an individual node of the taxonomy and a statistics module configured to determine trends relating to the individual node. The taxonomy editor further includes a similarity module configured to evaluate keyword similarity relative to individual scientific papers associated with the individual node. The taxonomy editor also includes a suggestion module configured to utilize the properties, the trends and the keyword similarity to identify potential modifications to the taxonomy. The taxonomy editor is further configured to present at least some of the potential modifications, the properties, the trends, and the keyword similarity concurrently with the visual representation of the taxonomy.
    • 该专利申请涉及分类编辑。 一个实现涉及分类编辑器,其被配置为生成与一组科学论文相关联的分类法的视觉表示。 分类编辑器包括被配置为识别与分类法的单个节点相关的属性的属性模块,以及被配置为确定与各个节点相关的趋势的统计模块。 分类编辑器还包括相似度模块,其被配置为评估与单个节点相关联的各个科学论文的关键字相似度。 分类编辑器还包括配置为利用属性,趋势和关键字相似性的建议模块来识别对分类法的潜在修改。 分类编辑器还被配置为与分类法的视觉表示同时呈现至少一些潜在的修改,属性,趋势和关键词相似性。
    • 5. 发明授权
    • Finding related entity results for search queries
    • 查找搜索查询的相关实体结果
    • US08195655B2
    • 2012-06-05
    • US11758024
    • 2007-06-05
    • Sanjay AgrawalKaushik ChakrabartiSurajit ChaudhuriVenkatesh Ganti
    • Sanjay AgrawalKaushik ChakrabartiSurajit ChaudhuriVenkatesh Ganti
    • G06F17/30
    • G06F17/278G06F17/30864
    • Architecture for finding related entities for web search queries. An extraction component takes a document as input and outputs all the mentions (or occurrences) of named entities such as names of people, organizations, locations, and products in the document, as well as entity metadata. An indexing component takes a document identifier (docID) and the set of mentions of named entities and, stores and indexes the information for retrieval. A document-based search component takes a keyword query and returns the docIDs of the top documents matching with the query. A retrieval component takes a docID as input, accesses the information stored by the indexing component and returns the set of mentions of named entities in the document. This information is then passed to an entity scoring and thresholding component that computes an aggregate score of each entity and selects the entities to return to the user.
    • 用于查找网络搜索查询的相关实体的架构。 提取组件将文档作为输入并输出所有实体的所有提及(或出现),例如文档中的人员,组织,位置和产品的名称以及实体元数据。 索引组件采用文档标识符(docID)和命名实体的提及集合,并存储和索引信息进行检索。 基于文档的搜索组件接受关键字查询,并返回与查询匹配的顶级文档的docID。 检索组件将docID作为输入,访问由索引组件存储的信息,并返回文档中命名实体的提及集。 然后将该信息传递给实体计分和阈值组件,该组件计算每个实体的聚合分数,并选择要返回给用户的实体。
    • 6. 发明申请
    • Finding Related Entities For Search Queries
    • 查找搜索查询的相关实体
    • US20080306908A1
    • 2008-12-11
    • US11758024
    • 2007-06-05
    • Sanjay AgrawalKaushik ChakrabartiSurajit ChaudhuriVenkatesh Ganti
    • Sanjay AgrawalKaushik ChakrabartiSurajit ChaudhuriVenkatesh Ganti
    • G06F17/30
    • G06F17/278G06F17/30864
    • Architecture for finding related entities for web search queries. An extraction component takes a document as input and outputs all the mentions (or occurrences) of named entities such as names of people, organizations, locations, and products in the document, as well as entity metadata. An indexing component takes a document identifier (docID) and the set of mentions of named entities and, stores and indexes the information for retrieval. A document-based search component takes a keyword query and returns the docIDs of the top documents matching with the query. A retrieval component takes a docID as input, accesses the information stored by the indexing component and returns the set of mentions of named entities in the document. This information is then passed to an entity scoring and thresholding component that computes an aggregate score of each entity and selects the entities to return to the user.
    • 用于查找网络搜索查询的相关实体的架构。 提取组件将文档作为输入并输出所有实体的所有提及(或出现),例如文档中的人员,组织,位置和产品的名称以及实体元数据。 索引组件采用文档标识符(docID)和命名实体的提及集合,并存储和索引信息进行检索。 基于文档的搜索组件接受关键字查询,并返回与查询匹配的顶级文档的docID。 检索组件将docID作为输入,访问由索引组件存储的信息,并返回文档中命名实体的提及集。 然后将该信息传递给实体计分和阈值组件,该组件计算每个实体的聚合分数,并选择要返回给用户的实体。
    • 10. 发明申请
    • EXAMPLE-DRIVEN DESIGN OF EFFICIENT RECORD MATCHING QUERIES
    • 实例 - 有效记录匹配查询的驱动设计
    • US20080306945A1
    • 2008-12-11
    • US11758202
    • 2007-06-05
    • Surajit ChaudhuriBee-Chung ChenVenkatesh GantiShriraghav Kaushik
    • Surajit ChaudhuriBee-Chung ChenVenkatesh GantiShriraghav Kaushik
    • G06F17/30
    • G06F17/30533G06F17/30495
    • Example-driven creation of record matching queries. The disclosed architecture employs techniques that exploit the availability of positive (or matching) and negative (non-matching) examples to search through this space and suggest an initial record matching query. The record matching task is modeled as that of designing an operator tree obtained by composing a few primitive operators. This ensures that record matching programs be executable efficiently and scalably over large input relations. The architecture joins records across multiple (e.g., two) relations (e.g., R and S). The architecture exploits the monotonicity property of similarity functions for record matching in the relations, in that, any pair of matching records have a higher similarity value than non-matching record pairs on at least one similarity function.
    • 示例驱动创建记录匹配查询。 所公开的架构采用利用正(或匹配)和否定(不匹配)示例的可用性来搜索该空间并提出初始记录匹配查询的技术。 记录匹配任务被建模为设计通过组合几个原始算子获得的运算符树的记录匹配任务。 这确保了记录匹配程序可以在大的输入关系上有效和可扩展地执行。 该架构通过多个(例如,两个)关系(例如,R和S)连接记录。 该架构利用了关系中记录匹配的相似度函数的单调性,因为任何一对匹配记录具有比至少一个相似度函数上的非匹配记录对更高的相似度值。