会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • ACCELERATION OF SPARSE SUPPORT VECTOR MACHINE TRAINING THROUGH SAFE FEATURE SCREENING
    • 通过安全特征筛选加速小型支持向量机训练
    • US20160247089A1
    • 2016-08-25
    • US14834365
    • 2015-08-24
    • SAS Institute Inc.
    • Zheng ZhaoJun LiuJames Allen Cox
    • G06N99/00
    • G06N99/005
    • A system for machine training can comprise one or more data processors and a non-transitory computer-readable storage medium containing instructions which, when executed on the one or more data processors, cause the one or more data processors to perform operations including: accessing a dataset comprising data tracking a plurality of features; determining a series of values for a regularization parameter of a sparse support vector machine model, the series including an initial regularization value and a next regularization value; computing an initial solution to the sparse support vector machine model for the initial regularization value; identifying, using the initial solution, inactive features of the sparse support vector machine model for the next regularization value; and computing a next solution to the sparse support vector machine model for the next regularization value, wherein computing the next solution includes excluding the inactive features.
    • 用于机器训练的系统可以包括一个或多个数据处理器和包含指令的非暂时计算机可读存储介质,所述指令在所述一个或多个数据处理器上执行时使所述一个或多个数据处理器执行操作,所述操作包括:访问 数据集,其包括跟踪多个特征的数据; 确定稀疏支持向量机模型的正则化参数的一系列值,该系列包括初始正则化值和下一个正则化值; 计算初始正则化值的稀疏支持向量机模型的初始解; 使用初始解决方案识别用于下一个正则化值的稀疏支持向量机模型的非活动特征; 并计算下一个正则化值的稀疏支持向量机模型的下一个解决方案,其中计算下一个解决方案包括排除非活动特征。
    • 5. 发明授权
    • Acceleration of sparse support vector machine training through safe feature screening
    • 通过安全特征筛选加快稀疏支持向量机训练
    • US09495647B2
    • 2016-11-15
    • US14834365
    • 2015-08-24
    • SAS Institute Inc.
    • Zheng ZhaoJun LiuJames Allen Cox
    • G06F15/18G06N99/00
    • G06N99/005
    • A system for machine training can comprise one or more data processors and a non-transitory computer-readable storage medium containing instructions which, when executed on the one or more data processors, cause the one or more data processors to perform operations including: accessing a dataset comprising data tracking a plurality of features; determining a series of values for a regularization parameter of a sparse support vector machine model, the series including an initial regularization value and a next regularization value; computing an initial solution to the sparse support vector machine model for the initial regularization value; identifying, using the initial solution, inactive features of the sparse support vector machine model for the next regularization value; and computing a next solution to the sparse support vector machine model for the next regularization value, wherein computing the next solution includes excluding the inactive features.
    • 用于机器训练的系统可以包括一个或多个数据处理器和包含指令的非暂时计算机可读存储介质,所述指令在所述一个或多个数据处理器上执行时使所述一个或多个数据处理器执行操作,所述操作包括:访问 数据集,其包括跟踪多个特征的数据; 确定稀疏支持向量机模型的正则化参数的一系列值,该系列包括初始正则化值和下一个正则化值; 计算初始正则化值的稀疏支持向量机模型的初始解; 使用初始解决方案识别用于下一个正则化值的稀疏支持向量机模型的非活动特征; 并计算下一个正则化值的稀疏支持向量机模型的下一个解决方案,其中计算下一个解决方案包括排除非活动特征。