会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • DETECTING POTENTIALLY FRAUDULENT TRANSACTIONS
    • 检测潜在的欺诈交易
    • US20100114617A1
    • 2010-05-06
    • US12261256
    • 2008-10-30
    • Russell P. BobbittQuanfu FanSharathchandra U. PankantiAkira YanagawaYun Zhai
    • Russell P. BobbittQuanfu FanSharathchandra U. PankantiAkira YanagawaYun Zhai
    • G08B31/00G06Q10/00
    • G08B13/19671G06Q20/202G06Q20/401G06Q30/06G06Q40/12
    • An approach that detects potentially fraudulent transactions is provided. In one embodiment, there is a fraud detection tool including, an identification component configured to identify a first person present within a zone of interest at a point of sale (POS) device using a set of sensor devices; a transaction component configured to determine whether the POS device has performed a first transaction and a second transaction while the first person is present within the zone of interest at the POS device; an analysis component configured to: analyze a transaction type of the first transaction and the second transaction; and detect whether the second transaction is potentially fraudulent based on a determination of whether the POS device has performed a first transaction and a second transaction while the first person is within the zone of interest at the POS device, and an analysis of the transaction type of the second transaction.
    • 提供了一种检测潜在欺诈交易的方法。 在一个实施例中,存在欺诈检测工具,其包括识别组件,其被配置为使用一组传感器设备来识别在销售点(POS)设备处存在于感兴趣区域内的第一人物; 交易组件,被配置为当所述第一人在所述POS设备的所述感兴趣区域内存在时,确定所述POS设备是否已经执行了第一交易和第二交易; 分析组件,其被配置为:分析所述第一事务和所述第二事务的事务类型; 并且当所述第一人在所述POS设备的所述感兴趣区域内时,基于所述POS设备是否已经执行了第一交易和所述第二交易的确定来检测所述第二交易是否具有潜在的欺诈性,以及所述交易类型的分析 第二笔交易。
    • 8. 发明授权
    • Modeling of temporarily static objects in surveillance video data
    • 监控视频数据中临时静态对象的建模
    • US08744123B2
    • 2014-06-03
    • US13220213
    • 2011-08-29
    • Russell P. BobbittQuanfu FanZuoxuan LuJiyan PanSharathchandra U. Pankanti
    • Russell P. BobbittQuanfu FanZuoxuan LuJiyan PanSharathchandra U. Pankanti
    • G06K9/00
    • G06K9/00771
    • A foreground object blob having a bounding box detected in frame image data is classified by a finite state machine as a background, moving foreground, or temporally static object, namely as the temporally static object when the detected bounding box is distinguished from a background model of a scene image of the video data input and remains static in the scene image for a threshold period. The bounding box is tracked through matching masks in subsequent frame data of the video data input, and the object sub-classified within a visible sub-state, an occluded sub-state, or another sub-state that is not visible and not occluded as a function of a static value ratio. The ratio is a number of pixels determined to be static by tracking in a foreground region of the background model corresponding to the tracked object bounding box over a total number of pixels of the foreground region.
    • 在帧图像数据中检测到的具有边界框的前景对象斑点被分类为有限状态机作为背景,移动前景或时间静态对象,即当检测到的边界框与背景模型 输入视频数据的场景图像,并在场景图像中保持静止阈值周期。 通过视频数据输入的后续帧数据中的匹配掩码来跟踪边界框,并且将子分类在可见子状态,闭塞子状态或不可见并且不被遮挡的另一子状态中的对象作为 静态值比的函数。 所述比例是通过在前景区域的总数目的像素对应于跟踪对象边界框的背景模型的前景区域中进行跟踪而确定为静态的像素的数量。
    • 9. 发明申请
    • MODELING OF TEMPORARILY STATIC OBJECTS IN SURVEILLANCE VIDEO DATA
    • 在监视视频数据中建立临时静态对象
    • US20130051613A1
    • 2013-02-28
    • US13220213
    • 2011-08-29
    • Russell P. BobbittQuanfu FanZuoxuan LuJiyan PanSharathchandra U. Pankanti
    • Russell P. BobbittQuanfu FanZuoxuan LuJiyan PanSharathchandra U. Pankanti
    • G06K9/00
    • G06K9/00771
    • A foreground object blob having a bounding box detected in frame image data is classified by a finite state machine as a background, moving foreground, or temporally static object, namely as the temporally static object when the detected bounding box is distinguished from a background model of a scene image of the video data input and remains static in the scene image for a threshold period. The bounding box is tracked through matching masks in subsequent frame data of the video data input, and the object sub-classified within a visible sub-state, an occluded sub-state, or another sub-state that is not visible and not occluded as a function of a static value ratio. The ratio is a number of pixels determined to be static by tracking in a foreground region of the background model corresponding to the tracked object bounding box over a total number of pixels of the foreground region.
    • 在帧图像数据中检测到的具有边界框的前景对象斑点被分类为有限状态机作为背景,移动前景或时间静态对象,即当检测到的边界框与背景模型 输入视频数据的场景图像,并在场景图像中保持静止阈值周期。 通过视频数据输入的后续帧数据中的匹配掩码来跟踪边界框,并且将子分类在可见子状态,闭塞子状态或不可见并且不被遮挡的另一子状态中的对象作为 静态值比的函数。 所述比例是通过在前景区域的总数目的像素对应于跟踪对象边界框的背景模型的前景区域中进行跟踪而确定为静态的像素的数量。