会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • DETERMINATION OF TRAIN PRESENCE AND MOTION STATE IN RAILWAY ENVIRONMENTS
    • 铁路环境中火车存在和运动状态的确定
    • US20140056479A1
    • 2014-02-27
    • US13590269
    • 2012-08-21
    • Russell P. BobbittRogerio S. FerisYun Zhai
    • Russell P. BobbittRogerio S. FerisYun Zhai
    • G06K9/62
    • G06K9/00771G06K9/00718G06K9/00765G06K9/6212G06T7/11
    • Foreground feature data and motion feature data is determined for frames of video data acquired from a train track area region of interest. The frames are labeled as “train present” if the determined foreground feature data value meets a threshold value, else as “train absent; and as “motion present” if the motion feature data meets a motion threshold, else as “static.” The labels are used to classify segments of the video data comprising groups of consecutive video frames, namely as within a “no train present” segment for groups with “train absent” and “static” labels; within a “train present and in transition” segment for groups “train present” and “motion present” labels; and within a “train present and stopped” segment for groups with “train present” and “static” labels. The presence or motion state of a train at a time of inquiry is thereby determined from the respective segment classification.
    • 确定从感兴趣的列车轨道区域获取的视频数据的帧的前景特征数据和运动特征数据。 如果确定的前景特征数据值满足阈值,则将帧标记为“列车存在”,否则,如果运动特征数据满足运动阈值,否则为“不存在运动;如运动特征数据满足运动阈值,否则为”静态“。 标签用于对包括连续视频帧组的视频数据的段进行分类,即对于具有“列车不存在”和“静态”标签的组的“无列车存在”段内;在“列车存在和转换”段内 在“火车现在”和“静态”标签组中,“列车现在”和“动作现状”标签组成的“火车现在和停止”部分中,列车在询问时的存在或运动状态为 由各分段分类确定。
    • 6. 发明授权
    • Determination of train presence and motion state in railway environments
    • 确定铁路环境中的列车存在和运动状态
    • US09070020B2
    • 2015-06-30
    • US13590269
    • 2012-08-21
    • Russell P. BobbittRogerio S. FerisYun Zhai
    • Russell P. BobbittRogerio S. FerisYun Zhai
    • G06K9/00
    • G06K9/00771G06K9/00718G06K9/00765G06K9/6212G06T7/11
    • Foreground feature data and motion feature data is determined for frames of video data acquired from a train track area region of interest. The frames are labeled as “train present” if the determined foreground feature data value meets a threshold value, else as “train absent”; and as “motion present” if the motion feature data meets a motion threshold, else as “static.” The labels are used to classify segments of the video data comprising groups of consecutive video frames, namely as within a “no train present” segment for groups with “train absent” and “static” labels; within a “train present and in transition” segment for groups “train present” and “motion present” labels; and within a “train present and stopped” segment for groups with “train present” and “static” labels. The presence or motion state of a train at a time of inquiry is thereby determined from the respective segment classification.
    • 确定从感兴趣的列车轨道区域获取的视频数据的帧的前景特征数据和运动特征数据。 如果确定的前景特征数据值满足阈值,则帧被标记为“列车存在”,否则被标记为“列车存在”,否则被标记为“列车存在” 如果运动特征数据满足运动阈值,则作为“运动呈现”,否则为“静态”。标签用于对包括连续视频帧组的视频数据的段进行分类,即在“无列车存在”段内 对于具有“火车不在”和“静态”标签的组; 在“火车现在”和“现场演出”标签的“火车现在和转型期”段内, 在“火车现在”和“静态”标签的组别内的“火车现在和停止”部分。 因此,从相应的段分类确定列车在询问时的存在或运动状态。
    • 9. 发明申请
    • Multispectral Detection of Personal Attributes for Video Surveillance
    • 用于视频监控的个人属性的多光谱检测
    • US20120027249A1
    • 2012-02-02
    • US12845121
    • 2010-07-28
    • Lisa M. BrownRogerio S. FerisArun HampapurDaniel A. Vaquero
    • Lisa M. BrownRogerio S. FerisArun HampapurDaniel A. Vaquero
    • G06K9/00
    • G06K9/00624G06K9/00771G06K9/2018G06K9/4614G06K9/6256
    • Techniques for detecting an attribute in video surveillance include generating training sets of multispectral images, generating a group of multispectral box features comprising receiving input of a detector size of a width and height, a number of spectral bands in the multispectral images, and integer values representing a minimum and maximum width and height of multispectral box features, fixing a feature width and to height, generating feature building blocks with the fixed width and height, placing a feature building block at a same location for each spectral band level, and enumerating combinations of the feature building blocks through each spectral level until all sizes within the integer values have been covered, and wherein each combination determines a multispectral box feature, using the training sets to select multispectral box features to generate a multispectral attribute detector, and using the multispectral attribute detector to identify a location of an attribute in video surveillance.
    • 用于检测视频监控中的属性的技术包括生成多光谱图像的训练集,生成一组多光谱特征,包括接收宽度和高度的检测器大小的输入,多光谱图像中的光谱带的数量,以及表示 多光谱盒特征的最小和最大宽度和高度,固定特征宽度和高度,生成具有固定宽度和高度的特征构建块,将特征构建块放置在每个光谱带级的相同位置,并列举 特征构成块通过每个光谱级别直到整数值中的所有尺寸已经被覆盖,并且其中每个组合确定多光谱特征,使用训练集来选择多光谱特征以产生多光谱属性检测器,并且使用多光谱属性 检测器,以识别vi中属性的位置 deo监视。
    • 10. 发明授权
    • Multispectral detection of personal attributes for video surveillance
    • 用于视频监控的个人属性的多光谱检测
    • US08515127B2
    • 2013-08-20
    • US12845121
    • 2010-07-28
    • Lisa M. BrownRogerio S. FerisArun HampapurDaniel A. Vaquero
    • Lisa M. BrownRogerio S. FerisArun HampapurDaniel A. Vaquero
    • G06K9/00
    • G06K9/00624G06K9/00771G06K9/2018G06K9/4614G06K9/6256
    • Techniques for detecting an attribute in video surveillance include generating training sets of multispectral images, generating a group of multispectral box features comprising receiving input of a detector size of a width and height, a number of spectral bands in the multispectral images, and integer values representing a minimum and maximum width and height of multispectral box features, fixing a feature width and height, generating feature building blocks with the fixed width and height, placing a feature building block at a same location for each spectral band level, and enumerating combinations of the feature building blocks through each spectral level until all sizes within the integer values have been covered, and wherein each combination determines a multispectral box feature, using the training sets to select multispectral box features to generate a multispectral attribute detector, and using the multispectral attribute detector to identify a location of an attribute in video surveillance.
    • 用于检测视频监控中的属性的技术包括生成多光谱图像的训练集,生成一组多光谱特征,包括接收宽度和高度的检测器大小的输入,多光谱图像中的光谱带的数量,以及表示 多光谱盒特征的最小和最大宽度和高度,固定特征宽度和高度,生成具有固定宽度和高度的特征构建块,将特征构建块放置在每个光谱带级的相同位置,并列举 通过每个光谱级别的特征构建块,直到整数值中的所有大小被覆盖,并且其中每个组合确定多光谱特征,使用训练集选择多光谱特征以产生多光谱属性检测器,并使用多光谱属性检测器 识别视频中属性的位置 监视。